New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elncs | GIF version |
Description: Membership in the cardinals. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
elncs | ⊢ (A ∈ NC ↔ ∃x A = Nc x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ncs 6099 | . . 3 ⊢ NC = (V / ≈ ) | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ NC ↔ A ∈ (V / ≈ )) |
3 | elex 2868 | . . 3 ⊢ (A ∈ (V / ≈ ) → A ∈ V) | |
4 | ncex 6118 | . . . . 5 ⊢ Nc x ∈ V | |
5 | eleq1 2413 | . . . . 5 ⊢ (A = Nc x → (A ∈ V ↔ Nc x ∈ V)) | |
6 | 4, 5 | mpbiri 224 | . . . 4 ⊢ (A = Nc x → A ∈ V) |
7 | 6 | exlimiv 1634 | . . 3 ⊢ (∃x A = Nc x → A ∈ V) |
8 | elqsg 5977 | . . . 4 ⊢ (A ∈ V → (A ∈ (V / ≈ ) ↔ ∃x ∈ V A = [x] ≈ )) | |
9 | df-nc 6102 | . . . . . . 7 ⊢ Nc x = [x] ≈ | |
10 | 9 | eqeq2i 2363 | . . . . . 6 ⊢ (A = Nc x ↔ A = [x] ≈ ) |
11 | 10 | exbii 1582 | . . . . 5 ⊢ (∃x A = Nc x ↔ ∃x A = [x] ≈ ) |
12 | rexv 2874 | . . . . 5 ⊢ (∃x ∈ V A = [x] ≈ ↔ ∃x A = [x] ≈ ) | |
13 | 11, 12 | bitr4i 243 | . . . 4 ⊢ (∃x A = Nc x ↔ ∃x ∈ V A = [x] ≈ ) |
14 | 8, 13 | syl6bbr 254 | . . 3 ⊢ (A ∈ V → (A ∈ (V / ≈ ) ↔ ∃x A = Nc x)) |
15 | 3, 7, 14 | pm5.21nii 342 | . 2 ⊢ (A ∈ (V / ≈ ) ↔ ∃x A = Nc x) |
16 | 2, 15 | bitri 240 | 1 ⊢ (A ∈ NC ↔ ∃x A = Nc x) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 [cec 5946 / cqs 5947 ≈ cen 6029 NC cncs 6089 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 |
This theorem is referenced by: ncelncs 6121 ncseqnc 6129 muccl 6133 muccom 6135 mucass 6136 1cnc 6140 muc0 6143 mucid1 6144 ncaddccl 6145 ncdisjeq 6149 peano4nc 6151 tcdi 6165 nc0le1 6217 dflec3 6222 lenc 6224 tc11 6229 taddc 6230 letc 6232 ce2le 6234 cet 6235 te0c 6238 ce0lenc1 6240 tlenc1c 6241 addcdi 6251 muc0or 6253 |
Copyright terms: Public domain | W3C validator |