New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elxpi | GIF version |
Description: Membership in a cross product. Uses fewer axioms than elxp 4802. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxpi | ⊢ (A ∈ (B × C) → ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . . . . 6 ⊢ (z = A → (z = 〈x, y〉 ↔ A = 〈x, y〉)) | |
2 | 1 | anbi1d 685 | . . . . 5 ⊢ (z = A → ((z = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔ (A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)))) |
3 | 2 | 2exbidv 1628 | . . . 4 ⊢ (z = A → (∃x∃y(z = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔ ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)))) |
4 | 3 | elabg 2987 | . . 3 ⊢ (A ∈ {z ∣ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))} → (A ∈ {z ∣ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))} ↔ ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)))) |
5 | 4 | ibi 232 | . 2 ⊢ (A ∈ {z ∣ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))} → ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |
6 | df-xp 4785 | . . 3 ⊢ (B × C) = {〈x, y〉 ∣ (x ∈ B ∧ y ∈ C)} | |
7 | df-opab 4624 | . . 3 ⊢ {〈x, y〉 ∣ (x ∈ B ∧ y ∈ C)} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))} | |
8 | 6, 7 | eqtri 2373 | . 2 ⊢ (B × C) = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))} |
9 | 5, 8 | eleq2s 2445 | 1 ⊢ (A ∈ (B × C) → ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 〈cop 4562 {copab 4623 × cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-opab 4624 df-xp 4785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |