NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elabg GIF version

Theorem elabg 2987
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.)
Hypothesis
Ref Expression
elabg.1 (x = A → (φψ))
Assertion
Ref Expression
elabg (A V → (A {x φ} ↔ ψ))
Distinct variable groups:   ψ,x   x,A
Allowed substitution hints:   φ(x)   V(x)

Proof of Theorem elabg
StepHypRef Expression
1 nfcv 2490 . 2 xA
2 nfv 1619 . 2 xψ
3 elabg.1 . 2 (x = A → (φψ))
41, 2, 3elabgf 2984 1 (A V → (A {x φ} ↔ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wcel 1710  {cab 2339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by:  elab2g  2988  intmin3  3955  peano5  4410  findsd  4411  nnadjoin  4521  spfininduct  4541  vfinspclt  4553  elxpi  4801  elimasn  5020  clos1induct  5881  clos1is  5882  elmapg  6013  elce  6176  spacis  6289
  Copyright terms: Public domain W3C validator