New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elabg | GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
elabg | ⊢ (A ∈ V → (A ∈ {x ∣ φ} ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2489 | . 2 ⊢ ℲxA | |
2 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
3 | elabg.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
4 | 1, 2, 3 | elabgf 2983 | 1 ⊢ (A ∈ V → (A ∈ {x ∣ φ} ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 |
This theorem is referenced by: elab2g 2987 intmin3 3954 peano5 4409 findsd 4410 nnadjoin 4520 spfininduct 4540 vfinspclt 4552 elxpi 4800 elimasn 5019 clos1induct 5880 clos1is 5881 elmapg 6012 elce 6175 spacis 6288 |
Copyright terms: Public domain | W3C validator |