New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeq12d | GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeq12d.1 | ⊢ (φ → A = B) |
eqeq12d.2 | ⊢ (φ → C = D) |
Ref | Expression |
---|---|
eqeq12d | ⊢ (φ → (A = C ↔ B = D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12d.1 | . 2 ⊢ (φ → A = B) | |
2 | eqeq12d.2 | . 2 ⊢ (φ → C = D) | |
3 | eqeq12 2365 | . 2 ⊢ ((A = B ∧ C = D) → (A = C ↔ B = D)) | |
4 | 1, 2, 3 | syl2anc 642 | 1 ⊢ (φ → (A = C ↔ B = D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: sbceqg 3153 csbing 3463 csbifg 3691 uniprg 3907 unisng 3909 intprg 3961 iununi 4051 csbiotag 4372 preaddccan2 4456 csbopabg 4638 csbima12g 4956 fveqres 5356 eqfnfv2f 5397 fvreseq 5399 fnressn 5439 fvi 5443 fvsng 5447 csbovg 5553 eqfnov 5590 ov2ag 5599 caovcomg 5625 caovassg 5627 caovcan 5629 caovdig 5633 caovdirg 5634 caovmo 5646 ov2gf 5712 fvmptf 5723 fvfullfun 5865 taddc 6230 letc 6232 addcdi 6251 addccan2nc 6266 nchoicelem1 6290 nchoicelem2 6291 nchoicelem9 6298 nchoicelem17 6306 nchoice 6309 |
Copyright terms: Public domain | W3C validator |