NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqeq12 GIF version

Theorem eqeq12 2365
Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
eqeq12 ((A = B C = D) → (A = CB = D))

Proof of Theorem eqeq12
StepHypRef Expression
1 eqeq1 2359 . 2 (A = B → (A = CB = C))
2 eqeq2 2362 . 2 (C = D → (B = CB = D))
31, 2sylan9bb 680 1 ((A = B C = D) → (A = CB = D))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346
This theorem is referenced by:  eqeq12i  2366  eqeq12d  2367  eqeqan12d  2368  dfpw12  4302  fununiq  5518  fntxp  5805  pw1fnf1o  5856  fundmen  6044  ncdisjeq  6149  peano4nc  6151  sbth  6207  tc11  6229  fnfrec  6321
  Copyright terms: Public domain W3C validator