NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  swapf1o GIF version

Theorem swapf1o 5512
Description: Swap is a bijection over the universe. (Contributed by SF, 23-Feb-2015.) (Revised by Scott Fenton, 17-Apr-2021.)
Assertion
Ref Expression
swapf1o Swap :V–1-1-onto→V

Proof of Theorem swapf1o
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 5120 . . . 4 (Fun Swap xyz((x Swap y x Swap z) → y = z))
2 opeq 4620 . . . . . . . 8 y = Proj1 y, Proj2 y
32breq2i 4648 . . . . . . 7 (x Swap yx Swap Proj1 y, Proj2 y)
4 vex 2863 . . . . . . . . 9 y V
54proj1ex 4594 . . . . . . . 8 Proj1 y V
64proj2ex 4595 . . . . . . . 8 Proj2 y V
75, 6brswap2 4861 . . . . . . 7 (x Swap Proj1 y, Proj2 yx = Proj2 y, Proj1 y)
83, 7bitri 240 . . . . . 6 (x Swap yx = Proj2 y, Proj1 y)
9 opeq 4620 . . . . . . . 8 z = Proj1 z, Proj2 z
109breq2i 4648 . . . . . . 7 (x Swap zx Swap Proj1 z, Proj2 z)
11 vex 2863 . . . . . . . . 9 z V
1211proj1ex 4594 . . . . . . . 8 Proj1 z V
1311proj2ex 4595 . . . . . . . 8 Proj2 z V
1412, 13brswap2 4861 . . . . . . 7 (x Swap Proj1 z, Proj2 zx = Proj2 z, Proj1 z)
1510, 14bitri 240 . . . . . 6 (x Swap zx = Proj2 z, Proj1 z)
16 eqtr2 2371 . . . . . . 7 ((x = Proj2 y, Proj1 y x = Proj2 z, Proj1 z) → Proj2 y, Proj1 y = Proj2 z, Proj1 z)
17 ancom 437 . . . . . . . 8 (( Proj2 y = Proj2 z Proj1 y = Proj1 z) ↔ ( Proj1 y = Proj1 z Proj2 y = Proj2 z))
18 opth 4603 . . . . . . . 8 ( Proj2 y, Proj1 y = Proj2 z, Proj1 z ↔ ( Proj2 y = Proj2 z Proj1 y = Proj1 z))
192, 9eqeq12i 2366 . . . . . . . . 9 (y = z Proj1 y, Proj2 y = Proj1 z, Proj2 z)
20 opth 4603 . . . . . . . . 9 ( Proj1 y, Proj2 y = Proj1 z, Proj2 z ↔ ( Proj1 y = Proj1 z Proj2 y = Proj2 z))
2119, 20bitri 240 . . . . . . . 8 (y = z ↔ ( Proj1 y = Proj1 z Proj2 y = Proj2 z))
2217, 18, 213bitr4i 268 . . . . . . 7 ( Proj2 y, Proj1 y = Proj2 z, Proj1 zy = z)
2316, 22sylib 188 . . . . . 6 ((x = Proj2 y, Proj1 y x = Proj2 z, Proj1 z) → y = z)
248, 15, 23syl2anb 465 . . . . 5 ((x Swap y x Swap z) → y = z)
2524gen2 1547 . . . 4 yz((x Swap y x Swap z) → y = z)
261, 25mpgbir 1550 . . 3 Fun Swap
27 eqv 3566 . . . 4 (dom Swap = V ↔ x x dom Swap )
28 opeq 4620 . . . . 5 x = Proj1 x, Proj2 x
29 eqid 2353 . . . . . . 7 Proj1 x, Proj2 x = Proj1 x, Proj2 x
30 vex 2863 . . . . . . . . 9 x V
3130proj2ex 4595 . . . . . . . 8 Proj2 x V
3230proj1ex 4594 . . . . . . . 8 Proj1 x V
3331, 32brswap2 4861 . . . . . . 7 ( Proj1 x, Proj2 x Swap Proj2 x, Proj1 x Proj1 x, Proj2 x = Proj1 x, Proj2 x)
3429, 33mpbir 200 . . . . . 6 Proj1 x, Proj2 x Swap Proj2 x, Proj1 x
35 breldm 4912 . . . . . 6 ( Proj1 x, Proj2 x Swap Proj2 x, Proj1 x Proj1 x, Proj2 x dom Swap )
3634, 35ax-mp 5 . . . . 5 Proj1 x, Proj2 x dom Swap
3728, 36eqeltri 2423 . . . 4 x dom Swap
3827, 37mpgbir 1550 . . 3 dom Swap = V
39 df-fn 4791 . . 3 ( Swap Fn V ↔ (Fun Swap dom Swap = V))
4026, 38, 39mpbir2an 886 . 2 Swap Fn V
41 cnvswap 5511 . . . 4 Swap = Swap
4241fneq1i 5179 . . 3 ( Swap Fn V ↔ Swap Fn V)
4340, 42mpbir 200 . 2 Swap Fn V
44 dff1o4 5295 . 2 ( Swap :V–1-1-onto→V ↔ ( Swap Fn V Swap Fn V))
4540, 43, 44mpbir2an 886 1 Swap :V–1-1-onto→V
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540   = wceq 1642   wcel 1710  Vcvv 2860  cop 4562   Proj1 cproj1 4564   Proj2 cproj2 4565   class class class wbr 4640   Swap cswap 4719  ccnv 4772  dom cdm 4773  Fun wfun 4776   Fn wfn 4777  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-swap 4725  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795
This theorem is referenced by:  swapres  5513
  Copyright terms: Public domain W3C validator