NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqssi GIF version

Theorem eqssi 3289
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
eqssi.1 A B
eqssi.2 B A
Assertion
Ref Expression
eqssi A = B

Proof of Theorem eqssi
StepHypRef Expression
1 eqssi.1 . 2 A B
2 eqssi.2 . 2 B A
3 eqss 3288 . 2 (A = B ↔ (A B B A))
41, 2, 3mpbir2an 886 1 A = B
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  inv1  3578  unv  3579  intab  3957  evenoddnnnul  4515  dmv  4921  0ima  5015  clos10  5888  cenc  6182
  Copyright terms: Public domain W3C validator