New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > euxfr | GIF version |
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A. (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
euxfr.1 | ⊢ A ∈ V |
euxfr.2 | ⊢ ∃!y x = A |
euxfr.3 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
euxfr | ⊢ (∃!xφ ↔ ∃!yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euxfr.2 | . . . . . 6 ⊢ ∃!y x = A | |
2 | euex 2227 | . . . . . 6 ⊢ (∃!y x = A → ∃y x = A) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ∃y x = A |
4 | 3 | biantrur 492 | . . . 4 ⊢ (φ ↔ (∃y x = A ∧ φ)) |
5 | 19.41v 1901 | . . . 4 ⊢ (∃y(x = A ∧ φ) ↔ (∃y x = A ∧ φ)) | |
6 | euxfr.3 | . . . . . 6 ⊢ (x = A → (φ ↔ ψ)) | |
7 | 6 | pm5.32i 618 | . . . . 5 ⊢ ((x = A ∧ φ) ↔ (x = A ∧ ψ)) |
8 | 7 | exbii 1582 | . . . 4 ⊢ (∃y(x = A ∧ φ) ↔ ∃y(x = A ∧ ψ)) |
9 | 4, 5, 8 | 3bitr2i 264 | . . 3 ⊢ (φ ↔ ∃y(x = A ∧ ψ)) |
10 | 9 | eubii 2213 | . 2 ⊢ (∃!xφ ↔ ∃!x∃y(x = A ∧ ψ)) |
11 | euxfr.1 | . . 3 ⊢ A ∈ V | |
12 | 1 | eumoi 2245 | . . 3 ⊢ ∃*y x = A |
13 | 11, 12 | euxfr2 3022 | . 2 ⊢ (∃!x∃y(x = A ∧ ψ) ↔ ∃!yψ) |
14 | 10, 13 | bitri 240 | 1 ⊢ (∃!xφ ↔ ∃!yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |