New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eumo0 | GIF version |
Description: Existential uniqueness implies "at most one." (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eumo0.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
eumo0 | ⊢ (∃!xφ → ∃y∀x(φ → x = y)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo0.1 | . . 3 ⊢ Ⅎyφ | |
2 | 1 | euf 2210 | . 2 ⊢ (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) |
3 | bi1 178 | . . . 4 ⊢ ((φ ↔ x = y) → (φ → x = y)) | |
4 | 3 | alimi 1559 | . . 3 ⊢ (∀x(φ ↔ x = y) → ∀x(φ → x = y)) |
5 | 4 | eximi 1576 | . 2 ⊢ (∃y∀x(φ ↔ x = y) → ∃y∀x(φ → x = y)) |
6 | 2, 5 | sylbi 187 | 1 ⊢ (∃!xφ → ∃y∀x(φ → x = y)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 |
This theorem is referenced by: eu2 2229 mo2 2233 |
Copyright terms: Public domain | W3C validator |