New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > euf | GIF version |
Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
euf.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
euf | ⊢ (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2208 | . 2 ⊢ (∃!xφ ↔ ∃z∀x(φ ↔ x = z)) | |
2 | euf.1 | . . . . 5 ⊢ Ⅎyφ | |
3 | nfv 1619 | . . . . 5 ⊢ Ⅎy x = z | |
4 | 2, 3 | nfbi 1834 | . . . 4 ⊢ Ⅎy(φ ↔ x = z) |
5 | 4 | nfal 1842 | . . 3 ⊢ Ⅎy∀x(φ ↔ x = z) |
6 | nfv 1619 | . . . . 5 ⊢ Ⅎzφ | |
7 | nfv 1619 | . . . . 5 ⊢ Ⅎz x = y | |
8 | 6, 7 | nfbi 1834 | . . . 4 ⊢ Ⅎz(φ ↔ x = y) |
9 | 8 | nfal 1842 | . . 3 ⊢ Ⅎz∀x(φ ↔ x = y) |
10 | equequ2 1686 | . . . . 5 ⊢ (z = y → (x = z ↔ x = y)) | |
11 | 10 | bibi2d 309 | . . . 4 ⊢ (z = y → ((φ ↔ x = z) ↔ (φ ↔ x = y))) |
12 | 11 | albidv 1625 | . . 3 ⊢ (z = y → (∀x(φ ↔ x = z) ↔ ∀x(φ ↔ x = y))) |
13 | 5, 9, 12 | cbvex 1985 | . 2 ⊢ (∃z∀x(φ ↔ x = z) ↔ ∃y∀x(φ ↔ x = y)) |
14 | 1, 13 | bitri 240 | 1 ⊢ (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 |
This theorem is referenced by: eu1 2225 eumo0 2228 |
Copyright terms: Public domain | W3C validator |