New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elres | GIF version |
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) |
Ref | Expression |
---|---|
elres | ⊢ (A ∈ (B ↾ C) ↔ ∃x ∈ C ∃y(A = 〈x, y〉 ∧ 〈x, y〉 ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . . . . 6 ⊢ (A = 〈x, y〉 → (A ∈ (B ↾ C) ↔ 〈x, y〉 ∈ (B ↾ C))) | |
2 | opelres 4951 | . . . . . . 7 ⊢ (〈x, y〉 ∈ (B ↾ C) ↔ (〈x, y〉 ∈ B ∧ x ∈ C)) | |
3 | ancom 437 | . . . . . . 7 ⊢ ((〈x, y〉 ∈ B ∧ x ∈ C) ↔ (x ∈ C ∧ 〈x, y〉 ∈ B)) | |
4 | 2, 3 | bitri 240 | . . . . . 6 ⊢ (〈x, y〉 ∈ (B ↾ C) ↔ (x ∈ C ∧ 〈x, y〉 ∈ B)) |
5 | 1, 4 | syl6bb 252 | . . . . 5 ⊢ (A = 〈x, y〉 → (A ∈ (B ↾ C) ↔ (x ∈ C ∧ 〈x, y〉 ∈ B))) |
6 | 5 | pm5.32i 618 | . . . 4 ⊢ ((A = 〈x, y〉 ∧ A ∈ (B ↾ C)) ↔ (A = 〈x, y〉 ∧ (x ∈ C ∧ 〈x, y〉 ∈ B))) |
7 | an12 772 | . . . 4 ⊢ ((A = 〈x, y〉 ∧ (x ∈ C ∧ 〈x, y〉 ∈ B)) ↔ (x ∈ C ∧ (A = 〈x, y〉 ∧ 〈x, y〉 ∈ B))) | |
8 | 6, 7 | bitri 240 | . . 3 ⊢ ((A = 〈x, y〉 ∧ A ∈ (B ↾ C)) ↔ (x ∈ C ∧ (A = 〈x, y〉 ∧ 〈x, y〉 ∈ B))) |
9 | 8 | 2exbii 1583 | . 2 ⊢ (∃x∃y(A = 〈x, y〉 ∧ A ∈ (B ↾ C)) ↔ ∃x∃y(x ∈ C ∧ (A = 〈x, y〉 ∧ 〈x, y〉 ∈ B))) |
10 | opeqex 4622 | . . . 4 ⊢ (A ∈ (B ↾ C) → ∃x∃y A = 〈x, y〉) | |
11 | 10 | pm4.71ri 614 | . . 3 ⊢ (A ∈ (B ↾ C) ↔ (∃x∃y A = 〈x, y〉 ∧ A ∈ (B ↾ C))) |
12 | 19.41vv 1902 | . . 3 ⊢ (∃x∃y(A = 〈x, y〉 ∧ A ∈ (B ↾ C)) ↔ (∃x∃y A = 〈x, y〉 ∧ A ∈ (B ↾ C))) | |
13 | 11, 12 | bitr4i 243 | . 2 ⊢ (A ∈ (B ↾ C) ↔ ∃x∃y(A = 〈x, y〉 ∧ A ∈ (B ↾ C))) |
14 | df-rex 2621 | . . 3 ⊢ (∃x ∈ C ∃y(A = 〈x, y〉 ∧ 〈x, y〉 ∈ B) ↔ ∃x(x ∈ C ∧ ∃y(A = 〈x, y〉 ∧ 〈x, y〉 ∈ B))) | |
15 | exdistr 1906 | . . 3 ⊢ (∃x∃y(x ∈ C ∧ (A = 〈x, y〉 ∧ 〈x, y〉 ∈ B)) ↔ ∃x(x ∈ C ∧ ∃y(A = 〈x, y〉 ∧ 〈x, y〉 ∈ B))) | |
16 | 14, 15 | bitr4i 243 | . 2 ⊢ (∃x ∈ C ∃y(A = 〈x, y〉 ∧ 〈x, y〉 ∈ B) ↔ ∃x∃y(x ∈ C ∧ (A = 〈x, y〉 ∧ 〈x, y〉 ∈ B))) |
17 | 9, 13, 16 | 3bitr4i 268 | 1 ⊢ (A ∈ (B ↾ C) ↔ ∃x ∈ C ∃y(A = 〈x, y〉 ∧ 〈x, y〉 ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 〈cop 4562 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-xp 4785 df-res 4789 |
This theorem is referenced by: elsnres 4997 |
Copyright terms: Public domain | W3C validator |