NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  expimpd GIF version

Theorem expimpd 586
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.)
Hypothesis
Ref Expression
expimpd.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
expimpd (φ → ((ψ χ) → θ))

Proof of Theorem expimpd
StepHypRef Expression
1 expimpd.1 . . 3 ((φ ψ) → (χθ))
21ex 423 . 2 (φ → (ψ → (χθ)))
32imp3a 420 1 (φ → ((ψ χ) → θ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  tfindi  4496  elpreima  5407  enmap2lem3  6065  enmap1lem3  6071  ncdisjun  6136  ncssfin  6151  leltctr  6212  letc  6231  nchoicelem8  6296  nchoicelem12  6300
  Copyright terms: Public domain W3C validator