![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > leltctr | GIF version |
Description: Transitivity law for cardinal less than or equal and less than. (Contributed by SF, 16-Mar-2015.) |
Ref | Expression |
---|---|
leltctr | ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((A ≤c B ∧ B <c C) → A <c C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lectr 6211 | . . . . . 6 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((A ≤c B ∧ B ≤c C) → A ≤c C)) | |
2 | 1 | expdimp 426 | . . . . 5 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ A ≤c B) → (B ≤c C → A ≤c C)) |
3 | 2 | adantrd 454 | . . . 4 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ A ≤c B) → ((B ≤c C ∧ B ≠ C) → A ≤c C)) |
4 | breq1 4642 | . . . . . . . . . . 11 ⊢ (A = C → (A ≤c B ↔ C ≤c B)) | |
5 | 4 | anbi1d 685 | . . . . . . . . . 10 ⊢ (A = C → ((A ≤c B ∧ B ≤c C) ↔ (C ≤c B ∧ B ≤c C))) |
6 | 5 | biimpac 472 | . . . . . . . . 9 ⊢ (((A ≤c B ∧ B ≤c C) ∧ A = C) → (C ≤c B ∧ B ≤c C)) |
7 | sbth 6206 | . . . . . . . . . . . 12 ⊢ ((C ∈ NC ∧ B ∈ NC ) → ((C ≤c B ∧ B ≤c C) → C = B)) | |
8 | 7 | ancoms 439 | . . . . . . . . . . 11 ⊢ ((B ∈ NC ∧ C ∈ NC ) → ((C ≤c B ∧ B ≤c C) → C = B)) |
9 | 8 | 3adant1 973 | . . . . . . . . . 10 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((C ≤c B ∧ B ≤c C) → C = B)) |
10 | eqcom 2355 | . . . . . . . . . 10 ⊢ (B = C ↔ C = B) | |
11 | 9, 10 | syl6ibr 218 | . . . . . . . . 9 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((C ≤c B ∧ B ≤c C) → B = C)) |
12 | 6, 11 | syl5 28 | . . . . . . . 8 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (((A ≤c B ∧ B ≤c C) ∧ A = C) → B = C)) |
13 | 12 | expdimp 426 | . . . . . . 7 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ (A ≤c B ∧ B ≤c C)) → (A = C → B = C)) |
14 | 13 | necon3d 2554 | . . . . . 6 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ (A ≤c B ∧ B ≤c C)) → (B ≠ C → A ≠ C)) |
15 | 14 | expr 598 | . . . . 5 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ A ≤c B) → (B ≤c C → (B ≠ C → A ≠ C))) |
16 | 15 | imp3a 420 | . . . 4 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ A ≤c B) → ((B ≤c C ∧ B ≠ C) → A ≠ C)) |
17 | 3, 16 | jcad 519 | . . 3 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ A ≤c B) → ((B ≤c C ∧ B ≠ C) → (A ≤c C ∧ A ≠ C))) |
18 | brltc 6114 | . . 3 ⊢ (B <c C ↔ (B ≤c C ∧ B ≠ C)) | |
19 | brltc 6114 | . . 3 ⊢ (A <c C ↔ (A ≤c C ∧ A ≠ C)) | |
20 | 17, 18, 19 | 3imtr4g 261 | . 2 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ A ≤c B) → (B <c C → A <c C)) |
21 | 20 | expimpd 586 | 1 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((A ≤c B ∧ B <c C) → A <c C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ≠ wne 2516 class class class wbr 4639 NC cncs 6088 ≤c clec 6089 <c cltc 6090 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-2nd 4797 df-txp 5736 df-fix 5740 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-clos1 5873 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-lec 6099 df-ltc 6100 df-nc 6101 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |