NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  leltctr GIF version

Theorem leltctr 6213
Description: Transitivity law for cardinal less than or equal and less than. (Contributed by SF, 16-Mar-2015.)
Assertion
Ref Expression
leltctr ((A NC B NC C NC ) → ((Ac B B <c C) → A <c C))

Proof of Theorem leltctr
StepHypRef Expression
1 lectr 6212 . . . . . 6 ((A NC B NC C NC ) → ((Ac B Bc C) → Ac C))
21expdimp 426 . . . . 5 (((A NC B NC C NC ) Ac B) → (Bc CAc C))
32adantrd 454 . . . 4 (((A NC B NC C NC ) Ac B) → ((Bc C BC) → Ac C))
4 breq1 4643 . . . . . . . . . . 11 (A = C → (Ac BCc B))
54anbi1d 685 . . . . . . . . . 10 (A = C → ((Ac B Bc C) ↔ (Cc B Bc C)))
65biimpac 472 . . . . . . . . 9 (((Ac B Bc C) A = C) → (Cc B Bc C))
7 sbth 6207 . . . . . . . . . . . 12 ((C NC B NC ) → ((Cc B Bc C) → C = B))
87ancoms 439 . . . . . . . . . . 11 ((B NC C NC ) → ((Cc B Bc C) → C = B))
983adant1 973 . . . . . . . . . 10 ((A NC B NC C NC ) → ((Cc B Bc C) → C = B))
10 eqcom 2355 . . . . . . . . . 10 (B = CC = B)
119, 10syl6ibr 218 . . . . . . . . 9 ((A NC B NC C NC ) → ((Cc B Bc C) → B = C))
126, 11syl5 28 . . . . . . . 8 ((A NC B NC C NC ) → (((Ac B Bc C) A = C) → B = C))
1312expdimp 426 . . . . . . 7 (((A NC B NC C NC ) (Ac B Bc C)) → (A = CB = C))
1413necon3d 2555 . . . . . 6 (((A NC B NC C NC ) (Ac B Bc C)) → (BCAC))
1514expr 598 . . . . 5 (((A NC B NC C NC ) Ac B) → (Bc C → (BCAC)))
1615imp3a 420 . . . 4 (((A NC B NC C NC ) Ac B) → ((Bc C BC) → AC))
173, 16jcad 519 . . 3 (((A NC B NC C NC ) Ac B) → ((Bc C BC) → (Ac C AC)))
18 brltc 6115 . . 3 (B <c C ↔ (Bc C BC))
19 brltc 6115 . . 3 (A <c C ↔ (Ac C AC))
2017, 18, 193imtr4g 261 . 2 (((A NC B NC C NC ) Ac B) → (B <c CA <c C))
2120expimpd 586 1 ((A NC B NC C NC ) → ((Ac B B <c C) → A <c C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934   = wceq 1642   wcel 1710  wne 2517   class class class wbr 4640   NC cncs 6089  c clec 6090   <c cltc 6091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-lec 6100  df-ltc 6101  df-nc 6102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator