NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1eq2 GIF version

Theorem f1eq2 5255
Description: Equality theorem for one-to-one functions. (Contributed by set.mm contributors, 10-Feb-1997.)
Assertion
Ref Expression
f1eq2 (A = B → (F:A1-1CF:B1-1C))

Proof of Theorem f1eq2
StepHypRef Expression
1 feq2 5212 . . 3 (A = B → (F:A–→CF:B–→C))
21anbi1d 685 . 2 (A = B → ((F:A–→C Fun F) ↔ (F:B–→C Fun F)))
3 df-f1 4793 . 2 (F:A1-1C ↔ (F:A–→C Fun F))
4 df-f1 4793 . 2 (F:B1-1C ↔ (F:B–→C Fun F))
52, 3, 43bitr4g 279 1 (A = B → (F:A1-1CF:B1-1C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  ccnv 4772  Fun wfun 4776  –→wf 4778  1-1wf1 4779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-fn 4791  df-f 4792  df-f1 4793
This theorem is referenced by:  f1oeq2  5283  dflec3  6222  nclenc  6223
  Copyright terms: Public domain W3C validator