| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > f1eq3 | GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by set.mm contributors, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq3 | ⊢ (A = B → (F:C–1-1→A ↔ F:C–1-1→B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq3 5213 | . . 3 ⊢ (A = B → (F:C–→A ↔ F:C–→B)) | |
| 2 | 1 | anbi1d 685 | . 2 ⊢ (A = B → ((F:C–→A ∧ Fun ◡F) ↔ (F:C–→B ∧ Fun ◡F))) |
| 3 | df-f1 4793 | . 2 ⊢ (F:C–1-1→A ↔ (F:C–→A ∧ Fun ◡F)) | |
| 4 | df-f1 4793 | . 2 ⊢ (F:C–1-1→B ↔ (F:C–→B ∧ Fun ◡F)) | |
| 5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (A = B → (F:C–1-1→A ↔ F:C–1-1→B)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ◡ccnv 4772 Fun wfun 4776 –→wf 4778 –1-1→wf1 4779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-f1 4793 |
| This theorem is referenced by: f1oeq3 5284 nclenc 6223 |
| Copyright terms: Public domain | W3C validator |