New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1eq3 GIF version

Theorem f1eq3 5255
 Description: Equality theorem for one-to-one functions. (Contributed by set.mm contributors, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3 (A = B → (F:C1-1AF:C1-1B))

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 5212 . . 3 (A = B → (F:C–→AF:C–→B))
21anbi1d 685 . 2 (A = B → ((F:C–→A Fun F) ↔ (F:C–→B Fun F)))
3 df-f1 4792 . 2 (F:C1-1A ↔ (F:C–→A Fun F))
4 df-f1 4792 . 2 (F:C1-1B ↔ (F:C–→B Fun F))
52, 3, 43bitr4g 279 1 (A = B → (F:C1-1AF:C1-1B))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358   = wceq 1642  ◡ccnv 4771  Fun wfun 4775  –→wf 4777  –1-1→wf1 4778 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259  df-f 4791  df-f1 4792 This theorem is referenced by:  f1oeq3  5283  nclenc  6222
 Copyright terms: Public domain W3C validator