NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1oeq3 GIF version

Theorem f1oeq3 5284
Description: Equality theorem for one-to-one onto functions. (Contributed by set.mm contributors, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (A = B → (F:C1-1-ontoAF:C1-1-ontoB))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 5256 . . 3 (A = B → (F:C1-1AF:C1-1B))
2 foeq3 5268 . . 3 (A = B → (F:ContoAF:ContoB))
31, 2anbi12d 691 . 2 (A = B → ((F:C1-1A F:ContoA) ↔ (F:C1-1B F:ContoB)))
4 df-f1o 4795 . 2 (F:C1-1-ontoA ↔ (F:C1-1A F:ContoA))
5 df-f1o 4795 . 2 (F:C1-1-ontoB ↔ (F:C1-1B F:ContoB))
63, 4, 53bitr4g 279 1 (A = B → (F:C1-1-ontoAF:C1-1-ontoB))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  1-1wf1 4779  ontowfo 4780  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795
This theorem is referenced by:  f1oeq23  5285  resdif  5307  resin  5308  f1osng  5324  isoeq5  5487  isoini2  5499  swapres  5513  bren  6031  xpcomen  6053  xpassen  6058  enpw1pw  6076
  Copyright terms: Public domain W3C validator