New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1oeq3 | GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by set.mm contributors, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq3 | ⊢ (A = B → (F:C–1-1-onto→A ↔ F:C–1-1-onto→B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq3 5255 | . . 3 ⊢ (A = B → (F:C–1-1→A ↔ F:C–1-1→B)) | |
2 | foeq3 5267 | . . 3 ⊢ (A = B → (F:C–onto→A ↔ F:C–onto→B)) | |
3 | 1, 2 | anbi12d 691 | . 2 ⊢ (A = B → ((F:C–1-1→A ∧ F:C–onto→A) ↔ (F:C–1-1→B ∧ F:C–onto→B))) |
4 | df-f1o 4794 | . 2 ⊢ (F:C–1-1-onto→A ↔ (F:C–1-1→A ∧ F:C–onto→A)) | |
5 | df-f1o 4794 | . 2 ⊢ (F:C–1-1-onto→B ↔ (F:C–1-1→B ∧ F:C–onto→B)) | |
6 | 3, 4, 5 | 3bitr4g 279 | 1 ⊢ (A = B → (F:C–1-1-onto→A ↔ F:C–1-1-onto→B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 –1-1→wf1 4778 –onto→wfo 4779 –1-1-onto→wf1o 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 |
This theorem is referenced by: f1oeq23 5284 resdif 5306 resin 5307 f1osng 5323 isoeq5 5486 isoini2 5498 swapres 5512 bren 6030 xpcomen 6052 xpassen 6057 enpw1pw 6075 |
Copyright terms: Public domain | W3C validator |