New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1f1orn | GIF version |
Description: A one-to-one function maps one-to-one onto its range. (Contributed by set.mm contributors, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1f1orn | ⊢ (F:A–1-1→B → F:A–1-1-onto→ran F) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5260 | . 2 ⊢ (F:A–1-1→B → F Fn A) | |
2 | df-f1 4793 | . . 3 ⊢ (F:A–1-1→B ↔ (F:A–→B ∧ Fun ◡F)) | |
3 | 2 | simprbi 450 | . 2 ⊢ (F:A–1-1→B → Fun ◡F) |
4 | f1orn 5297 | . 2 ⊢ (F:A–1-1-onto→ran F ↔ (F Fn A ∧ Fun ◡F)) | |
5 | 1, 3, 4 | sylanbrc 645 | 1 ⊢ (F:A–1-1→B → F:A–1-1-onto→ran F) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ◡ccnv 4772 ran crn 4774 Fun wfun 4776 Fn wfn 4777 –→wf 4778 –1-1→wf1 4779 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: f1cnv 5312 f1cocnv1 5313 f1cocnv2 5314 dflec3 6222 |
Copyright terms: Public domain | W3C validator |