New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1oeq23 | GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.) |
Ref | Expression |
---|---|
f1oeq23 | ⊢ ((A = B ∧ C = D) → (F:A–1-1-onto→C ↔ F:B–1-1-onto→D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 5283 | . 2 ⊢ (A = B → (F:A–1-1-onto→C ↔ F:B–1-1-onto→C)) | |
2 | f1oeq3 5284 | . 2 ⊢ (C = D → (F:B–1-1-onto→C ↔ F:B–1-1-onto→D)) | |
3 | 1, 2 | sylan9bb 680 | 1 ⊢ ((A = B ∧ C = D) → (F:A–1-1-onto→C ↔ F:B–1-1-onto→D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |