New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fint | GIF version |
Description: Function into an intersection. (The proof was shortened by Andrew Salmon, 17-Sep-2011.) (Contributed by set.mm contributors, 14-Oct-1999.) (Revised by set.mm contributors, 18-Sep-2011.) |
Ref | Expression |
---|---|
fint.1 | ⊢ B ≠ ∅ |
Ref | Expression |
---|---|
fint | ⊢ (F:A–→∩B ↔ ∀x ∈ B F:A–→x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 3943 | . . . 4 ⊢ (ran F ⊆ ∩B ↔ ∀x ∈ B ran F ⊆ x) | |
2 | 1 | anbi2i 675 | . . 3 ⊢ ((F Fn A ∧ ran F ⊆ ∩B) ↔ (F Fn A ∧ ∀x ∈ B ran F ⊆ x)) |
3 | fint.1 | . . . 4 ⊢ B ≠ ∅ | |
4 | r19.28zv 3646 | . . . 4 ⊢ (B ≠ ∅ → (∀x ∈ B (F Fn A ∧ ran F ⊆ x) ↔ (F Fn A ∧ ∀x ∈ B ran F ⊆ x))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (∀x ∈ B (F Fn A ∧ ran F ⊆ x) ↔ (F Fn A ∧ ∀x ∈ B ran F ⊆ x)) |
6 | 2, 5 | bitr4i 243 | . 2 ⊢ ((F Fn A ∧ ran F ⊆ ∩B) ↔ ∀x ∈ B (F Fn A ∧ ran F ⊆ x)) |
7 | df-f 4792 | . 2 ⊢ (F:A–→∩B ↔ (F Fn A ∧ ran F ⊆ ∩B)) | |
8 | df-f 4792 | . . 3 ⊢ (F:A–→x ↔ (F Fn A ∧ ran F ⊆ x)) | |
9 | 8 | ralbii 2639 | . 2 ⊢ (∀x ∈ B F:A–→x ↔ ∀x ∈ B (F Fn A ∧ ran F ⊆ x)) |
10 | 6, 7, 9 | 3bitr4i 268 | 1 ⊢ (F:A–→∩B ↔ ∀x ∈ B F:A–→x) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ≠ wne 2517 ∀wral 2615 ⊆ wss 3258 ∅c0 3551 ∩cint 3927 ran crn 4774 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-int 3928 df-f 4792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |