NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fint GIF version

Theorem fint 5246
Description: Function into an intersection. (The proof was shortened by Andrew Salmon, 17-Sep-2011.) (Contributed by set.mm contributors, 14-Oct-1999.) (Revised by set.mm contributors, 18-Sep-2011.)
Hypothesis
Ref Expression
fint.1 B
Assertion
Ref Expression
fint (F:A–→Bx B F:A–→x)
Distinct variable groups:   x,A   x,B   x,F

Proof of Theorem fint
StepHypRef Expression
1 ssint 3943 . . . 4 (ran F Bx B ran F x)
21anbi2i 675 . . 3 ((F Fn A ran F B) ↔ (F Fn A x B ran F x))
3 fint.1 . . . 4 B
4 r19.28zv 3646 . . . 4 (B → (x B (F Fn A ran F x) ↔ (F Fn A x B ran F x)))
53, 4ax-mp 5 . . 3 (x B (F Fn A ran F x) ↔ (F Fn A x B ran F x))
62, 5bitr4i 243 . 2 ((F Fn A ran F B) ↔ x B (F Fn A ran F x))
7 df-f 4792 . 2 (F:A–→B ↔ (F Fn A ran F B))
8 df-f 4792 . . 3 (F:A–→x ↔ (F Fn A ran F x))
98ralbii 2639 . 2 (x B F:A–→xx B (F Fn A ran F x))
106, 7, 93bitr4i 268 1 (F:A–→Bx B F:A–→x)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wne 2517  wral 2615   wss 3258  c0 3551  cint 3927  ran crn 4774   Fn wfn 4777  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-int 3928  df-f 4792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator