New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssint | GIF version |
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ssint | ⊢ (A ⊆ ∩B ↔ ∀x ∈ B A ⊆ x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3264 | . 2 ⊢ (A ⊆ ∩B ↔ ∀y ∈ A y ∈ ∩B) | |
2 | vex 2863 | . . . 4 ⊢ y ∈ V | |
3 | 2 | elint2 3934 | . . 3 ⊢ (y ∈ ∩B ↔ ∀x ∈ B y ∈ x) |
4 | 3 | ralbii 2639 | . 2 ⊢ (∀y ∈ A y ∈ ∩B ↔ ∀y ∈ A ∀x ∈ B y ∈ x) |
5 | ralcom 2772 | . . 3 ⊢ (∀y ∈ A ∀x ∈ B y ∈ x ↔ ∀x ∈ B ∀y ∈ A y ∈ x) | |
6 | dfss3 3264 | . . . 4 ⊢ (A ⊆ x ↔ ∀y ∈ A y ∈ x) | |
7 | 6 | ralbii 2639 | . . 3 ⊢ (∀x ∈ B A ⊆ x ↔ ∀x ∈ B ∀y ∈ A y ∈ x) |
8 | 5, 7 | bitr4i 243 | . 2 ⊢ (∀y ∈ A ∀x ∈ B y ∈ x ↔ ∀x ∈ B A ⊆ x) |
9 | 1, 4, 8 | 3bitri 262 | 1 ⊢ (A ⊆ ∩B ↔ ∀x ∈ B A ⊆ x) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 ∀wral 2615 ⊆ wss 3258 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 |
This theorem is referenced by: ssintab 3944 ssintub 3945 iinpw 4055 fint 5246 |
Copyright terms: Public domain | W3C validator |