NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fofn GIF version

Theorem fofn 5271
Description: An onto mapping is a function on its domain. (Contributed by set.mm contributors, 16-Dec-2008.)
Assertion
Ref Expression
fofn (F:AontoBF Fn A)

Proof of Theorem fofn
StepHypRef Expression
1 fof 5269 . 2 (F:AontoBF:A–→B)
2 ffn 5223 . 2 (F:A–→BF Fn A)
31, 2syl 15 1 (F:AontoBF Fn A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   Fn wfn 4776  –→wf 4777  ontowfo 4779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259  df-f 4791  df-fo 4793
This theorem is referenced by:  fodmrnu  5277  fo00  5318  opfv1st  5514  opfv2nd  5515  fundmen  6043  xpassen  6057
  Copyright terms: Public domain W3C validator