New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fofn | GIF version |
Description: An onto mapping is a function on its domain. (Contributed by set.mm contributors, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn | ⊢ (F:A–onto→B → F Fn A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5270 | . 2 ⊢ (F:A–onto→B → F:A–→B) | |
2 | ffn 5224 | . 2 ⊢ (F:A–→B → F Fn A) | |
3 | 1, 2 | syl 15 | 1 ⊢ (F:A–onto→B → F Fn A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 4777 –→wf 4778 –onto→wfo 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-fo 4794 |
This theorem is referenced by: fodmrnu 5278 fo00 5319 opfv1st 5515 opfv2nd 5516 fundmen 6044 xpassen 6058 |
Copyright terms: Public domain | W3C validator |