NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fundmen GIF version

Theorem fundmen 6044
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by SF, 23-Feb-2015.)
Hypothesis
Ref Expression
fundmen.1 F V
Assertion
Ref Expression
fundmen (Fun F → dom FF)

Proof of Theorem fundmen
Dummy variables x y z a b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssv 3292 . . . . . 6 F V
2 1stfo 5506 . . . . . . 7 1st :V–onto→V
3 fofn 5272 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
4 fnssresb 5196 . . . . . . 7 (1st Fn V → ((1st F) Fn FF V))
52, 3, 4mp2b 9 . . . . . 6 ((1st F) Fn FF V)
61, 5mpbir 200 . . . . 5 (1st F) Fn F
76a1i 10 . . . 4 (Fun F → (1st F) Fn F)
8 brcnv 4893 . . . . . . . . . . 11 (x(1st F)yy(1st F)x)
9 brres 4950 . . . . . . . . . . 11 (y(1st F)x ↔ (y1st x y F))
10 vex 2863 . . . . . . . . . . . . . 14 x V
1110br1st 4859 . . . . . . . . . . . . 13 (y1st xa y = x, a)
1211anbi1i 676 . . . . . . . . . . . 12 ((y1st x y F) ↔ (a y = x, a y F))
13 19.41v 1901 . . . . . . . . . . . 12 (a(y = x, a y F) ↔ (a y = x, a y F))
1412, 13bitr4i 243 . . . . . . . . . . 11 ((y1st x y F) ↔ a(y = x, a y F))
158, 9, 143bitri 262 . . . . . . . . . 10 (x(1st F)ya(y = x, a y F))
16 brcnv 4893 . . . . . . . . . . . 12 (x(1st F)zz(1st F)x)
17 brres 4950 . . . . . . . . . . . 12 (z(1st F)x ↔ (z1st x z F))
1810br1st 4859 . . . . . . . . . . . . 13 (z1st xb z = x, b)
1918anbi1i 676 . . . . . . . . . . . 12 ((z1st x z F) ↔ (b z = x, b z F))
2016, 17, 193bitri 262 . . . . . . . . . . 11 (x(1st F)z ↔ (b z = x, b z F))
21 19.41v 1901 . . . . . . . . . . 11 (b(z = x, b z F) ↔ (b z = x, b z F))
2220, 21bitr4i 243 . . . . . . . . . 10 (x(1st F)zb(z = x, b z F))
2315, 22anbi12i 678 . . . . . . . . 9 ((x(1st F)y x(1st F)z) ↔ (a(y = x, a y F) b(z = x, b z F)))
24 eeanv 1913 . . . . . . . . 9 (ab((y = x, a y F) (z = x, b z F)) ↔ (a(y = x, a y F) b(z = x, b z F)))
2523, 24bitr4i 243 . . . . . . . 8 ((x(1st F)y x(1st F)z) ↔ ab((y = x, a y F) (z = x, b z F)))
26 an4 797 . . . . . . . . . 10 (((y = x, a y F) (z = x, b z F)) ↔ ((y = x, a z = x, b) (y F z F)))
27 dffun4 5122 . . . . . . . . . . . . 13 (Fun Fxab((x, a F x, b F) → a = b))
28 sp 1747 . . . . . . . . . . . . . . 15 (b((x, a F x, b F) → a = b) → ((x, a F x, b F) → a = b))
2928sps 1754 . . . . . . . . . . . . . 14 (ab((x, a F x, b F) → a = b) → ((x, a F x, b F) → a = b))
3029sps 1754 . . . . . . . . . . . . 13 (xab((x, a F x, b F) → a = b) → ((x, a F x, b F) → a = b))
3127, 30sylbi 187 . . . . . . . . . . . 12 (Fun F → ((x, a F x, b F) → a = b))
32 opeq2 4580 . . . . . . . . . . . 12 (a = bx, a = x, b)
3331, 32syl6 29 . . . . . . . . . . 11 (Fun F → ((x, a F x, b F) → x, a = x, b))
34 eleq1 2413 . . . . . . . . . . . . . . 15 (y = x, a → (y Fx, a F))
35 eleq1 2413 . . . . . . . . . . . . . . 15 (z = x, b → (z Fx, b F))
3634, 35bi2anan9 843 . . . . . . . . . . . . . 14 ((y = x, a z = x, b) → ((y F z F) ↔ (x, a F x, b F)))
37 eqeq12 2365 . . . . . . . . . . . . . 14 ((y = x, a z = x, b) → (y = zx, a = x, b))
3836, 37imbi12d 311 . . . . . . . . . . . . 13 ((y = x, a z = x, b) → (((y F z F) → y = z) ↔ ((x, a F x, b F) → x, a = x, b)))
3938biimprcd 216 . . . . . . . . . . . 12 (((x, a F x, b F) → x, a = x, b) → ((y = x, a z = x, b) → ((y F z F) → y = z)))
4039imp3a 420 . . . . . . . . . . 11 (((x, a F x, b F) → x, a = x, b) → (((y = x, a z = x, b) (y F z F)) → y = z))
4133, 40syl 15 . . . . . . . . . 10 (Fun F → (((y = x, a z = x, b) (y F z F)) → y = z))
4226, 41syl5bi 208 . . . . . . . . 9 (Fun F → (((y = x, a y F) (z = x, b z F)) → y = z))
4342exlimdvv 1637 . . . . . . . 8 (Fun F → (ab((y = x, a y F) (z = x, b z F)) → y = z))
4425, 43syl5bi 208 . . . . . . 7 (Fun F → ((x(1st F)y x(1st F)z) → y = z))
4544alrimiv 1631 . . . . . 6 (Fun Fz((x(1st F)y x(1st F)z) → y = z))
4645alrimivv 1632 . . . . 5 (Fun Fxyz((x(1st F)y x(1st F)z) → y = z))
47 dffun2 5120 . . . . 5 (Fun (1st F) ↔ xyz((x(1st F)y x(1st F)z) → y = z))
4846, 47sylibr 203 . . . 4 (Fun F → Fun (1st F))
49 dfdm4 5508 . . . . . 6 dom F = (1stF)
50 dfima3 4952 . . . . . 6 (1stF) = ran (1st F)
5149, 50eqtr2i 2374 . . . . 5 ran (1st F) = dom F
5251a1i 10 . . . 4 (Fun F → ran (1st F) = dom F)
53 dff1o2 5292 . . . 4 ((1st F):F1-1-onto→dom F ↔ ((1st F) Fn F Fun (1st F) ran (1st F) = dom F))
547, 48, 52, 53syl3anbrc 1136 . . 3 (Fun F → (1st F):F1-1-onto→dom F)
55 1stex 4740 . . . . 5 1st V
56 fundmen.1 . . . . 5 F V
5755, 56resex 5118 . . . 4 (1st F) V
5857f1oen 6034 . . 3 ((1st F):F1-1-onto→dom FF ≈ dom F)
5954, 58syl 15 . 2 (Fun FF ≈ dom F)
60 ensym 6038 . 2 (F ≈ dom F ↔ dom FF)
6159, 60sylib 188 1 (Fun F → dom FF)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860   wss 3258  cop 4562   class class class wbr 4640  1st c1st 4718  cima 4723  ccnv 4772  dom cdm 4773  ran crn 4774   cres 4775  Fun wfun 4776   Fn wfn 4777  ontowfo 4780  1-1-ontowf1o 4781  cen 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-en 6030
This theorem is referenced by:  fundmeng  6045  xpsnen  6050
  Copyright terms: Public domain W3C validator