New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fv2 | GIF version |
Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (The proof was shortened by Andrew Salmon, 17-Sep-2011.) (Contributed by set.mm contributors, 30-Apr-2004.) (Revised by set.mm contributors, 18-Sep-2011.) |
Ref | Expression |
---|---|
fv2 | ⊢ (F ‘A) = ∪{x ∣ ∀y(AFy ↔ y = x)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 4796 | . 2 ⊢ (F ‘A) = (℩yAFy) | |
2 | dfiota2 4341 | . 2 ⊢ (℩yAFy) = ∪{x ∣ ∀y(AFy ↔ y = x)} | |
3 | 1, 2 | eqtri 2373 | 1 ⊢ (F ‘A) = ∪{x ∣ ∀y(AFy ↔ y = x)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 {cab 2339 ∪cuni 3892 ℩cio 4338 class class class wbr 4640 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-sn 3742 df-uni 3893 df-iota 4340 df-fv 4796 |
This theorem is referenced by: elfv 5327 |
Copyright terms: Public domain | W3C validator |