| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfiota2 | GIF version | ||
| Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfiota2 | ⊢ (℩xφ) = ∪{y ∣ ∀x(φ ↔ x = y)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota 4340 | . 2 ⊢ (℩xφ) = ∪{y ∣ {x ∣ φ} = {y}} | |
| 2 | df-sn 3742 | . . . . . 6 ⊢ {y} = {x ∣ x = y} | |
| 3 | 2 | eqeq2i 2363 | . . . . 5 ⊢ ({x ∣ φ} = {y} ↔ {x ∣ φ} = {x ∣ x = y}) |
| 4 | abbib 2464 | . . . . 5 ⊢ ({x ∣ φ} = {x ∣ x = y} ↔ ∀x(φ ↔ x = y)) | |
| 5 | 3, 4 | bitri 240 | . . . 4 ⊢ ({x ∣ φ} = {y} ↔ ∀x(φ ↔ x = y)) |
| 6 | 5 | abbii 2466 | . . 3 ⊢ {y ∣ {x ∣ φ} = {y}} = {y ∣ ∀x(φ ↔ x = y)} |
| 7 | 6 | unieqi 3902 | . 2 ⊢ ∪{y ∣ {x ∣ φ} = {y}} = ∪{y ∣ ∀x(φ ↔ x = y)} |
| 8 | 1, 7 | eqtri 2373 | 1 ⊢ (℩xφ) = ∪{y ∣ ∀x(φ ↔ x = y)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 {cab 2339 {csn 3738 ∪cuni 3892 ℩cio 4338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-sn 3742 df-uni 3893 df-iota 4340 |
| This theorem is referenced by: nfiota1 4342 nfiotad 4343 cbviota 4345 sb8iota 4347 iotaval 4351 iotanul 4355 eqtfinrelk 4487 fv2 5325 tcfnex 6245 |
| Copyright terms: Public domain | W3C validator |