New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1osng | GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1osng | ⊢ ((A ∈ V ∧ B ∈ W) → {〈A, B〉}:{A}–1-1-onto→{B}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3744 | . . . 4 ⊢ (a = A → {a} = {A}) | |
2 | f1oeq2 5282 | . . . 4 ⊢ ({a} = {A} → ({〈a, b〉}:{a}–1-1-onto→{b} ↔ {〈a, b〉}:{A}–1-1-onto→{b})) | |
3 | 1, 2 | syl 15 | . . 3 ⊢ (a = A → ({〈a, b〉}:{a}–1-1-onto→{b} ↔ {〈a, b〉}:{A}–1-1-onto→{b})) |
4 | opeq1 4578 | . . . 4 ⊢ (a = A → 〈a, b〉 = 〈A, b〉) | |
5 | sneq 3744 | . . . 4 ⊢ (〈a, b〉 = 〈A, b〉 → {〈a, b〉} = {〈A, b〉}) | |
6 | f1oeq1 5281 | . . . 4 ⊢ ({〈a, b〉} = {〈A, b〉} → ({〈a, b〉}:{A}–1-1-onto→{b} ↔ {〈A, b〉}:{A}–1-1-onto→{b})) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (a = A → ({〈a, b〉}:{A}–1-1-onto→{b} ↔ {〈A, b〉}:{A}–1-1-onto→{b})) |
8 | 3, 7 | bitrd 244 | . 2 ⊢ (a = A → ({〈a, b〉}:{a}–1-1-onto→{b} ↔ {〈A, b〉}:{A}–1-1-onto→{b})) |
9 | sneq 3744 | . . . 4 ⊢ (b = B → {b} = {B}) | |
10 | f1oeq3 5283 | . . . 4 ⊢ ({b} = {B} → ({〈A, b〉}:{A}–1-1-onto→{b} ↔ {〈A, b〉}:{A}–1-1-onto→{B})) | |
11 | 9, 10 | syl 15 | . . 3 ⊢ (b = B → ({〈A, b〉}:{A}–1-1-onto→{b} ↔ {〈A, b〉}:{A}–1-1-onto→{B})) |
12 | opeq2 4579 | . . . 4 ⊢ (b = B → 〈A, b〉 = 〈A, B〉) | |
13 | sneq 3744 | . . . 4 ⊢ (〈A, b〉 = 〈A, B〉 → {〈A, b〉} = {〈A, B〉}) | |
14 | f1oeq1 5281 | . . . 4 ⊢ ({〈A, b〉} = {〈A, B〉} → ({〈A, b〉}:{A}–1-1-onto→{B} ↔ {〈A, B〉}:{A}–1-1-onto→{B})) | |
15 | 12, 13, 14 | 3syl 18 | . . 3 ⊢ (b = B → ({〈A, b〉}:{A}–1-1-onto→{B} ↔ {〈A, B〉}:{A}–1-1-onto→{B})) |
16 | 11, 15 | bitrd 244 | . 2 ⊢ (b = B → ({〈A, b〉}:{A}–1-1-onto→{b} ↔ {〈A, B〉}:{A}–1-1-onto→{B})) |
17 | vex 2862 | . . 3 ⊢ a ∈ V | |
18 | vex 2862 | . . 3 ⊢ b ∈ V | |
19 | 17, 18 | f1osn 5322 | . 2 ⊢ {〈a, b〉}:{a}–1-1-onto→{b} |
20 | 8, 16, 19 | vtocl2g 2918 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → {〈A, B〉}:{A}–1-1-onto→{B}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {csn 3737 〈cop 4561 –1-1-onto→wf1o 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 |
This theorem is referenced by: en2sn 6047 |
Copyright terms: Public domain | W3C validator |