NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elfv GIF version

Theorem elfv 5327
Description: Membership in a function value. (Contributed by set.mm contributors, 30-Apr-2004.)
Assertion
Ref Expression
elfv (A (FB) ↔ x(A x y(BFyy = x)))
Distinct variable groups:   x,A   x,y,B   x,F,y
Allowed substitution hint:   A(y)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5325 . . 3 (FB) = {x y(BFyy = x)}
21eleq2i 2417 . 2 (A (FB) ↔ A {x y(BFyy = x)})
3 eluniab 3904 . 2 (A {x y(BFyy = x)} ↔ x(A x y(BFyy = x)))
42, 3bitri 240 1 (A (FB) ↔ x(A x y(BFyy = x)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wal 1540  wex 1541   wcel 1710  {cab 2339  cuni 3892   class class class wbr 4640  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-sn 3742  df-uni 3893  df-iota 4340  df-fv 4796
This theorem is referenced by:  fv3  5342
  Copyright terms: Public domain W3C validator