New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elfv | GIF version |
Description: Membership in a function value. (Contributed by set.mm contributors, 30-Apr-2004.) |
Ref | Expression |
---|---|
elfv | ⊢ (A ∈ (F ‘B) ↔ ∃x(A ∈ x ∧ ∀y(BFy ↔ y = x))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fv2 5325 | . . 3 ⊢ (F ‘B) = ∪{x ∣ ∀y(BFy ↔ y = x)} | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ (F ‘B) ↔ A ∈ ∪{x ∣ ∀y(BFy ↔ y = x)}) |
3 | eluniab 3904 | . 2 ⊢ (A ∈ ∪{x ∣ ∀y(BFy ↔ y = x)} ↔ ∃x(A ∈ x ∧ ∀y(BFy ↔ y = x))) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (A ∈ (F ‘B) ↔ ∃x(A ∈ x ∧ ∀y(BFy ↔ y = x))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 ∈ wcel 1710 {cab 2339 ∪cuni 3892 class class class wbr 4640 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-sn 3742 df-uni 3893 df-iota 4340 df-fv 4796 |
This theorem is referenced by: fv3 5342 |
Copyright terms: Public domain | W3C validator |