NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifeq1 GIF version

Theorem ifeq1 3667
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq1 (A = B → if(φ, A, C) = if(φ, B, C))

Proof of Theorem ifeq1
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 rabeq 2854 . . 3 (A = B → {x A φ} = {x B φ})
21uneq1d 3418 . 2 (A = B → ({x A φ} ∪ {x C ¬ φ}) = ({x B φ} ∪ {x C ¬ φ}))
3 dfif6 3666 . 2 if(φ, A, C) = ({x A φ} ∪ {x C ¬ φ})
4 dfif6 3666 . 2 if(φ, B, C) = ({x B φ} ∪ {x C ¬ φ})
52, 3, 43eqtr4g 2410 1 (A = B → if(φ, A, C) = if(φ, B, C))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  {crab 2619  cun 3208   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-if 3664
This theorem is referenced by:  ifeq12  3676  ifeq1d  3677  ifbieq12i  3684  ifexg  3722
  Copyright terms: Public domain W3C validator