NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ss2iun GIF version

Theorem ss2iun 3985
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun (x A B Cx A B x A C)

Proof of Theorem ss2iun
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 ssel 3268 . . . . 5 (B C → (y By C))
21ralimi 2690 . . . 4 (x A B Cx A (y By C))
3 rexim 2719 . . . 4 (x A (y By C) → (x A y Bx A y C))
42, 3syl 15 . . 3 (x A B C → (x A y Bx A y C))
5 eliun 3974 . . 3 (y x A Bx A y B)
6 eliun 3974 . . 3 (y x A Cx A y C)
74, 5, 63imtr4g 261 . 2 (x A B C → (y x A By x A C))
87ssrdv 3279 1 (x A B Cx A B x A C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wral 2615  wrex 2616   wss 3258  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-iun 3972
This theorem is referenced by:  iuneq2  3986
  Copyright terms: Public domain W3C validator