New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ss2iun | GIF version |
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ss2iun | ⊢ (∀x ∈ A B ⊆ C → ∪x ∈ A B ⊆ ∪x ∈ A C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3268 | . . . . 5 ⊢ (B ⊆ C → (y ∈ B → y ∈ C)) | |
2 | 1 | ralimi 2690 | . . . 4 ⊢ (∀x ∈ A B ⊆ C → ∀x ∈ A (y ∈ B → y ∈ C)) |
3 | rexim 2719 | . . . 4 ⊢ (∀x ∈ A (y ∈ B → y ∈ C) → (∃x ∈ A y ∈ B → ∃x ∈ A y ∈ C)) | |
4 | 2, 3 | syl 15 | . . 3 ⊢ (∀x ∈ A B ⊆ C → (∃x ∈ A y ∈ B → ∃x ∈ A y ∈ C)) |
5 | eliun 3974 | . . 3 ⊢ (y ∈ ∪x ∈ A B ↔ ∃x ∈ A y ∈ B) | |
6 | eliun 3974 | . . 3 ⊢ (y ∈ ∪x ∈ A C ↔ ∃x ∈ A y ∈ C) | |
7 | 4, 5, 6 | 3imtr4g 261 | . 2 ⊢ (∀x ∈ A B ⊆ C → (y ∈ ∪x ∈ A B → y ∈ ∪x ∈ A C)) |
8 | 7 | ssrdv 3279 | 1 ⊢ (∀x ∈ A B ⊆ C → ∪x ∈ A B ⊆ ∪x ∈ A C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ⊆ wss 3258 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
This theorem is referenced by: iuneq2 3986 |
Copyright terms: Public domain | W3C validator |