NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinrab GIF version

Theorem iinrab 4029
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab (Ax A {y B φ} = {y B x A φ})
Distinct variable groups:   y,A,x   x,B
Allowed substitution hints:   φ(x,y)   B(y)

Proof of Theorem iinrab
StepHypRef Expression
1 r19.28zv 3646 . . 3 (A → (x A (y B φ) ↔ (y B x A φ)))
21abbidv 2468 . 2 (A → {y x A (y B φ)} = {y (y B x A φ)})
3 df-rab 2624 . . . . 5 {y B φ} = {y (y B φ)}
43a1i 10 . . . 4 (x A → {y B φ} = {y (y B φ)})
54iineq2i 3989 . . 3 x A {y B φ} = x A {y (y B φ)}
6 iinab 4028 . . 3 x A {y (y B φ)} = {y x A (y B φ)}
75, 6eqtri 2373 . 2 x A {y B φ} = {y x A (y B φ)}
8 df-rab 2624 . 2 {y B x A φ} = {y (y B x A φ)}
92, 7, 83eqtr4g 2410 1 (Ax A {y B φ} = {y B x A φ})
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  {cab 2339  wne 2517  wral 2615  {crab 2619  c0 3551  ciin 3971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552  df-iin 3973
This theorem is referenced by:  iinrab2  4030  riinrab  4042
  Copyright terms: Public domain W3C validator