New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eliin | GIF version |
Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliin | ⊢ (A ∈ V → (A ∈ ∩x ∈ B C ↔ ∀x ∈ B A ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . 3 ⊢ (y = A → (y ∈ C ↔ A ∈ C)) | |
2 | 1 | ralbidv 2635 | . 2 ⊢ (y = A → (∀x ∈ B y ∈ C ↔ ∀x ∈ B A ∈ C)) |
3 | df-iin 3973 | . 2 ⊢ ∩x ∈ B C = {y ∣ ∀x ∈ B y ∈ C} | |
4 | 2, 3 | elab2g 2988 | 1 ⊢ (A ∈ V → (A ∈ ∩x ∈ B C ↔ ∀x ∈ B A ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-iin 3973 |
This theorem is referenced by: iinconst 3979 iuniin 3980 iinss1 3982 ssiinf 4016 iinss 4018 iinss2 4019 iinab 4028 iinun2 4033 iundif2 4034 iindif2 4036 iinin2 4037 elriin 4039 iinxprg 4044 iinuni 4050 iinpw 4055 cnviin 5119 |
Copyright terms: Public domain | W3C validator |