NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ineq2 GIF version

Theorem ineq2 3452
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2 (A = B → (CA) = (CB))

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3451 . 2 (A = B → (AC) = (BC))
2 incom 3449 . 2 (CA) = (AC)
3 incom 3449 . 2 (CB) = (BC)
41, 2, 33eqtr4g 2410 1 (A = B → (CA) = (CB))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214
This theorem is referenced by:  ineq12  3453  ineq2i  3455  ineq2d  3458  uneqin  3507  intprg  3961  eladdci  4400  addcid1  4406  elsuc  4414  addcass  4416  nndisjeq  4430  brdisjg  5822  qsdisj  5996
  Copyright terms: Public domain W3C validator