NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  txpeq2 GIF version

Theorem txpeq2 5781
Description: Equality theorem for tail cross product. (Contributed by Scott Fenton, 31-Jul-2019.)
Assertion
Ref Expression
txpeq2 (A = B → (CA) = (CB))

Proof of Theorem txpeq2
StepHypRef Expression
1 coeq2 4876 . . 3 (A = B → (2nd A) = (2nd B))
21ineq2d 3458 . 2 (A = B → ((1st C) ∩ (2nd A)) = ((1st C) ∩ (2nd B)))
3 df-txp 5737 . 2 (CA) = ((1st C) ∩ (2nd A))
4 df-txp 5737 . 2 (CB) = ((1st C) ∩ (2nd B))
52, 3, 43eqtr4g 2410 1 (A = B → (CA) = (CB))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  cin 3209  1st c1st 4718   ccom 4722  ccnv 4772  2nd c2nd 4784  ctxp 5736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-br 4641  df-co 4727  df-txp 5737
This theorem is referenced by:  pprodeq2  5836
  Copyright terms: Public domain W3C validator