New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iuniin | GIF version |
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iuniin | ⊢ ∪x ∈ A ∩y ∈ B C ⊆ ∩y ∈ B ∪x ∈ A C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 2728 | . . . 4 ⊢ (∃x ∈ A ∀y ∈ B z ∈ C → ∀y ∈ B ∃x ∈ A z ∈ C) | |
2 | vex 2863 | . . . . . 6 ⊢ z ∈ V | |
3 | eliin 3975 | . . . . . 6 ⊢ (z ∈ V → (z ∈ ∩y ∈ B C ↔ ∀y ∈ B z ∈ C)) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (z ∈ ∩y ∈ B C ↔ ∀y ∈ B z ∈ C) |
5 | 4 | rexbii 2640 | . . . 4 ⊢ (∃x ∈ A z ∈ ∩y ∈ B C ↔ ∃x ∈ A ∀y ∈ B z ∈ C) |
6 | eliun 3974 | . . . . 5 ⊢ (z ∈ ∪x ∈ A C ↔ ∃x ∈ A z ∈ C) | |
7 | 6 | ralbii 2639 | . . . 4 ⊢ (∀y ∈ B z ∈ ∪x ∈ A C ↔ ∀y ∈ B ∃x ∈ A z ∈ C) |
8 | 1, 5, 7 | 3imtr4i 257 | . . 3 ⊢ (∃x ∈ A z ∈ ∩y ∈ B C → ∀y ∈ B z ∈ ∪x ∈ A C) |
9 | eliun 3974 | . . 3 ⊢ (z ∈ ∪x ∈ A ∩y ∈ B C ↔ ∃x ∈ A z ∈ ∩y ∈ B C) | |
10 | eliin 3975 | . . . 4 ⊢ (z ∈ V → (z ∈ ∩y ∈ B ∪x ∈ A C ↔ ∀y ∈ B z ∈ ∪x ∈ A C)) | |
11 | 2, 10 | ax-mp 5 | . . 3 ⊢ (z ∈ ∩y ∈ B ∪x ∈ A C ↔ ∀y ∈ B z ∈ ∪x ∈ A C) |
12 | 8, 9, 11 | 3imtr4i 257 | . 2 ⊢ (z ∈ ∪x ∈ A ∩y ∈ B C → z ∈ ∩y ∈ B ∪x ∈ A C) |
13 | 12 | ssriv 3278 | 1 ⊢ ∪x ∈ A ∩y ∈ B C ⊆ ∩y ∈ B ∪x ∈ A C |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 Vcvv 2860 ⊆ wss 3258 ∪ciun 3970 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 df-iin 3973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |