New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssriv | GIF version |
Description: Inference rule based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 | ⊢ (x ∈ A → x ∈ B) |
Ref | Expression |
---|---|
ssriv | ⊢ A ⊆ B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3263 | . 2 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
2 | ssriv.1 | . 2 ⊢ (x ∈ A → x ∈ B) | |
3 | 1, 2 | mpgbir 1550 | 1 ⊢ A ⊆ B |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: ssid 3291 ssv 3292 difss 3394 ssun1 3427 inss1 3476 0ss 3580 difprsnss 3847 snsspw 3878 uniin 3912 iuniin 3980 iunpwss 4056 cokrelk 4285 evenoddnnnul 4515 dmin 4914 dmcoss 4972 dminss 5042 imainss 5043 nnssnc 6148 cenc 6182 |
Copyright terms: Public domain | W3C validator |