| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mo4f | GIF version | ||
| Description: "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| mo4f.1 | ⊢ Ⅎxψ |
| mo4f.2 | ⊢ (x = y → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| mo4f | ⊢ (∃*xφ ↔ ∀x∀y((φ ∧ ψ) → x = y)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . . 3 ⊢ Ⅎyφ | |
| 2 | 1 | mo3 2235 | . 2 ⊢ (∃*xφ ↔ ∀x∀y((φ ∧ [y / x]φ) → x = y)) |
| 3 | mo4f.1 | . . . . . 6 ⊢ Ⅎxψ | |
| 4 | mo4f.2 | . . . . . 6 ⊢ (x = y → (φ ↔ ψ)) | |
| 5 | 3, 4 | sbie 2038 | . . . . 5 ⊢ ([y / x]φ ↔ ψ) |
| 6 | 5 | anbi2i 675 | . . . 4 ⊢ ((φ ∧ [y / x]φ) ↔ (φ ∧ ψ)) |
| 7 | 6 | imbi1i 315 | . . 3 ⊢ (((φ ∧ [y / x]φ) → x = y) ↔ ((φ ∧ ψ) → x = y)) |
| 8 | 7 | 2albii 1567 | . 2 ⊢ (∀x∀y((φ ∧ [y / x]φ) → x = y) ↔ ∀x∀y((φ ∧ ψ) → x = y)) |
| 9 | 2, 8 | bitri 240 | 1 ⊢ (∃*xφ ↔ ∀x∀y((φ ∧ ψ) → x = y)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 [wsb 1648 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: mo4 2237 mob2 3017 |
| Copyright terms: Public domain | W3C validator |