New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ltcpw1pwg | GIF version |
Description: The cardinality of a unit power class is strictly less than the cardinality of the power class. Theorem XI.2.17 of [Rosser] p. 376. (Contributed by SF, 10-Mar-2015.) |
Ref | Expression |
---|---|
ltcpw1pwg | ⊢ (A ∈ V → Nc ℘1A <c Nc ℘A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1exg 4302 | . . . . 5 ⊢ (A ∈ V → ℘1A ∈ V) | |
2 | ncidg 6122 | . . . . 5 ⊢ (℘1A ∈ V → ℘1A ∈ Nc ℘1A) | |
3 | 1, 2 | syl 15 | . . . 4 ⊢ (A ∈ V → ℘1A ∈ Nc ℘1A) |
4 | pwexg 4328 | . . . . 5 ⊢ (A ∈ V → ℘A ∈ V) | |
5 | ncidg 6122 | . . . . 5 ⊢ (℘A ∈ V → ℘A ∈ Nc ℘A) | |
6 | 4, 5 | syl 15 | . . . 4 ⊢ (A ∈ V → ℘A ∈ Nc ℘A) |
7 | pw1sspw 4171 | . . . . 5 ⊢ ℘1A ⊆ ℘A | |
8 | sseq1 3292 | . . . . . 6 ⊢ (x = ℘1A → (x ⊆ y ↔ ℘1A ⊆ y)) | |
9 | sseq2 3293 | . . . . . 6 ⊢ (y = ℘A → (℘1A ⊆ y ↔ ℘1A ⊆ ℘A)) | |
10 | 8, 9 | rspc2ev 2963 | . . . . 5 ⊢ ((℘1A ∈ Nc ℘1A ∧ ℘A ∈ Nc ℘A ∧ ℘1A ⊆ ℘A) → ∃x ∈ Nc ℘1A∃y ∈ Nc ℘Ax ⊆ y) |
11 | 7, 10 | mp3an3 1266 | . . . 4 ⊢ ((℘1A ∈ Nc ℘1A ∧ ℘A ∈ Nc ℘A) → ∃x ∈ Nc ℘1A∃y ∈ Nc ℘Ax ⊆ y) |
12 | 3, 6, 11 | syl2anc 642 | . . 3 ⊢ (A ∈ V → ∃x ∈ Nc ℘1A∃y ∈ Nc ℘Ax ⊆ y) |
13 | ncex 6117 | . . . 4 ⊢ Nc ℘1A ∈ V | |
14 | ncex 6117 | . . . 4 ⊢ Nc ℘A ∈ V | |
15 | 13, 14 | brlec 6113 | . . 3 ⊢ ( Nc ℘1A ≤c Nc ℘A ↔ ∃x ∈ Nc ℘1A∃y ∈ Nc ℘Ax ⊆ y) |
16 | 12, 15 | sylibr 203 | . 2 ⊢ (A ∈ V → Nc ℘1A ≤c Nc ℘A) |
17 | ncpw1pwneg 6201 | . 2 ⊢ (A ∈ V → Nc ℘1A ≠ Nc ℘A) | |
18 | brltc 6114 | . 2 ⊢ ( Nc ℘1A <c Nc ℘A ↔ ( Nc ℘1A ≤c Nc ℘A ∧ Nc ℘1A ≠ Nc ℘A)) | |
19 | 16, 17, 18 | sylanbrc 645 | 1 ⊢ (A ∈ V → Nc ℘1A <c Nc ℘A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ≠ wne 2516 ∃wrex 2615 Vcvv 2859 ⊆ wss 3257 ℘cpw 3722 ℘1cpw1 4135 class class class wbr 4639 ≤c clec 6089 <c cltc 6090 Nc cnc 6091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-fullfun 5768 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-en 6029 df-lec 6099 df-ltc 6100 df-nc 6101 |
This theorem is referenced by: ce2lt 6220 nchoicelem19 6307 canltpw 6334 |
Copyright terms: Public domain | W3C validator |