New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vfinnc | GIF version |
Description: If the universe is finite, then there is a unique natural containing any set. Theorem X.1.22 of [Rosser] p. 527. (Contributed by SF, 19-Jan-2015.) |
Ref | Expression |
---|---|
vfinnc | ⊢ ((A ∈ V ∧ V ∈ Fin ) → ∃!x ∈ Nn A ∈ x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3292 | . . . 4 ⊢ A ⊆ V | |
2 | ssfin 4471 | . . . 4 ⊢ ((A ∈ V ∧ V ∈ Fin ∧ A ⊆ V) → A ∈ Fin ) | |
3 | 1, 2 | mp3an3 1266 | . . 3 ⊢ ((A ∈ V ∧ V ∈ Fin ) → A ∈ Fin ) |
4 | elfin 4421 | . . 3 ⊢ (A ∈ Fin ↔ ∃x ∈ Nn A ∈ x) | |
5 | 3, 4 | sylib 188 | . 2 ⊢ ((A ∈ V ∧ V ∈ Fin ) → ∃x ∈ Nn A ∈ x) |
6 | nnceleq 4431 | . . . . 5 ⊢ (((x ∈ Nn ∧ y ∈ Nn ) ∧ (A ∈ x ∧ A ∈ y)) → x = y) | |
7 | 6 | ex 423 | . . . 4 ⊢ ((x ∈ Nn ∧ y ∈ Nn ) → ((A ∈ x ∧ A ∈ y) → x = y)) |
8 | 7 | rgen2a 2681 | . . 3 ⊢ ∀x ∈ Nn ∀y ∈ Nn ((A ∈ x ∧ A ∈ y) → x = y) |
9 | 8 | a1i 10 | . 2 ⊢ ((A ∈ V ∧ V ∈ Fin ) → ∀x ∈ Nn ∀y ∈ Nn ((A ∈ x ∧ A ∈ y) → x = y)) |
10 | eleq2 2414 | . . 3 ⊢ (x = y → (A ∈ x ↔ A ∈ y)) | |
11 | 10 | reu4 3031 | . 2 ⊢ (∃!x ∈ Nn A ∈ x ↔ (∃x ∈ Nn A ∈ x ∧ ∀x ∈ Nn ∀y ∈ Nn ((A ∈ x ∧ A ∈ y) → x = y))) |
12 | 5, 9, 11 | sylanbrc 645 | 1 ⊢ ((A ∈ V ∧ V ∈ Fin ) → ∃!x ∈ Nn A ∈ x) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ∃!wreu 2617 Vcvv 2860 ⊆ wss 3258 Nn cnnc 4374 Fin cfin 4377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 |
This theorem is referenced by: ncfinprop 4475 |
Copyright terms: Public domain | W3C validator |