NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  vfinnc GIF version

Theorem vfinnc 4471
Description: If the universe is finite, then there is a unique natural containing any set. Theorem X.1.22 of [Rosser] p. 527. (Contributed by SF, 19-Jan-2015.)
Assertion
Ref Expression
vfinnc ((A V V Fin ) → ∃!x Nn A x)
Distinct variable group:   x,A
Allowed substitution hint:   V(x)

Proof of Theorem vfinnc
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 ssv 3291 . . . 4 A V
2 ssfin 4470 . . . 4 ((A V V Fin A V) → A Fin )
31, 2mp3an3 1266 . . 3 ((A V V Fin ) → A Fin )
4 elfin 4420 . . 3 (A Finx Nn A x)
53, 4sylib 188 . 2 ((A V V Fin ) → x Nn A x)
6 nnceleq 4430 . . . . 5 (((x Nn y Nn ) (A x A y)) → x = y)
76ex 423 . . . 4 ((x Nn y Nn ) → ((A x A y) → x = y))
87rgen2a 2680 . . 3 x Nn y Nn ((A x A y) → x = y)
98a1i 10 . 2 ((A V V Fin ) → x Nn y Nn ((A x A y) → x = y))
10 eleq2 2414 . . 3 (x = y → (A xA y))
1110reu4 3030 . 2 (∃!x Nn A x ↔ (x Nn A x x Nn y Nn ((A x A y) → x = y)))
125, 9, 11sylanbrc 645 1 ((A V V Fin ) → ∃!x Nn A x)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  wral 2614  wrex 2615  ∃!wreu 2616  Vcvv 2859   wss 3257   Nn cnnc 4373   Fin cfin 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380
This theorem is referenced by:  ncfinprop  4474
  Copyright terms: Public domain W3C validator