New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enpw | GIF version |
Description: If A and B are equinumerous, then so are their power sets. Theorem XI.1.36 of [Rosser] p. 369. (Contributed by SF, 17-Mar-2015.) |
Ref | Expression |
---|---|
enpw | ⊢ (A ≈ B → ℘A ≈ ℘B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . 2 ⊢ (A ≈ B → (A ∈ V ∧ B ∈ V)) | |
2 | breq1 4643 | . . . 4 ⊢ (a = A → (a ≈ b ↔ A ≈ b)) | |
3 | pweq 3726 | . . . . 5 ⊢ (a = A → ℘a = ℘A) | |
4 | 3 | breq1d 4650 | . . . 4 ⊢ (a = A → (℘a ≈ ℘b ↔ ℘A ≈ ℘b)) |
5 | 2, 4 | imbi12d 311 | . . 3 ⊢ (a = A → ((a ≈ b → ℘a ≈ ℘b) ↔ (A ≈ b → ℘A ≈ ℘b))) |
6 | breq2 4644 | . . . 4 ⊢ (b = B → (A ≈ b ↔ A ≈ B)) | |
7 | pweq 3726 | . . . . 5 ⊢ (b = B → ℘b = ℘B) | |
8 | 7 | breq2d 4652 | . . . 4 ⊢ (b = B → (℘A ≈ ℘b ↔ ℘A ≈ ℘B)) |
9 | 6, 8 | imbi12d 311 | . . 3 ⊢ (b = B → ((A ≈ b → ℘A ≈ ℘b) ↔ (A ≈ B → ℘A ≈ ℘B))) |
10 | enmap2 6069 | . . . 4 ⊢ (a ≈ b → ({V, ∅} ↑m a) ≈ ({V, ∅} ↑m b)) | |
11 | vn0 3558 | . . . . . . 7 ⊢ V ≠ ∅ | |
12 | eqid 2353 | . . . . . . 7 ⊢ {V, ∅} = {V, ∅} | |
13 | vvex 4110 | . . . . . . . 8 ⊢ V ∈ V | |
14 | 0ex 4111 | . . . . . . . 8 ⊢ ∅ ∈ V | |
15 | vex 2863 | . . . . . . . 8 ⊢ a ∈ V | |
16 | 13, 14, 15 | enprmapc 6084 | . . . . . . 7 ⊢ ((V ≠ ∅ ∧ {V, ∅} = {V, ∅}) → ({V, ∅} ↑m a) ≈ ℘a) |
17 | 11, 12, 16 | mp2an 653 | . . . . . 6 ⊢ ({V, ∅} ↑m a) ≈ ℘a |
18 | ensym 6038 | . . . . . 6 ⊢ (℘a ≈ ({V, ∅} ↑m a) ↔ ({V, ∅} ↑m a) ≈ ℘a) | |
19 | 17, 18 | mpbir 200 | . . . . 5 ⊢ ℘a ≈ ({V, ∅} ↑m a) |
20 | vex 2863 | . . . . . . . 8 ⊢ b ∈ V | |
21 | 13, 14, 20 | enprmapc 6084 | . . . . . . 7 ⊢ ((V ≠ ∅ ∧ {V, ∅} = {V, ∅}) → ({V, ∅} ↑m b) ≈ ℘b) |
22 | 11, 12, 21 | mp2an 653 | . . . . . 6 ⊢ ({V, ∅} ↑m b) ≈ ℘b |
23 | entr 6039 | . . . . . 6 ⊢ ((({V, ∅} ↑m a) ≈ ({V, ∅} ↑m b) ∧ ({V, ∅} ↑m b) ≈ ℘b) → ({V, ∅} ↑m a) ≈ ℘b) | |
24 | 22, 23 | mpan2 652 | . . . . 5 ⊢ (({V, ∅} ↑m a) ≈ ({V, ∅} ↑m b) → ({V, ∅} ↑m a) ≈ ℘b) |
25 | entr 6039 | . . . . 5 ⊢ ((℘a ≈ ({V, ∅} ↑m a) ∧ ({V, ∅} ↑m a) ≈ ℘b) → ℘a ≈ ℘b) | |
26 | 19, 24, 25 | sylancr 644 | . . . 4 ⊢ (({V, ∅} ↑m a) ≈ ({V, ∅} ↑m b) → ℘a ≈ ℘b) |
27 | 10, 26 | syl 15 | . . 3 ⊢ (a ≈ b → ℘a ≈ ℘b) |
28 | 5, 9, 27 | vtocl2g 2919 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ≈ B → ℘A ≈ ℘B)) |
29 | 1, 28 | mpcom 32 | 1 ⊢ (A ≈ B → ℘A ≈ ℘B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 Vcvv 2860 ∅c0 3551 ℘cpw 3723 {cpr 3739 class class class wbr 4640 (class class class)co 5526 ↑m cmap 6000 ≈ cen 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-map 6002 df-en 6030 |
This theorem is referenced by: ce2le 6234 |
Copyright terms: Public domain | W3C validator |