| Step | Hyp | Ref
| Expression |
| 1 | | brex 4690 |
. 2
⊢ (A ≈ B
→ (A ∈ V ∧ B ∈
V)) |
| 2 | | breq1 4643 |
. . . 4
⊢ (a = A →
(a ≈ b ↔ A
≈ b)) |
| 3 | | oveq2 5532 |
. . . . 5
⊢ (a = A →
(C ↑m a) = (C
↑m A)) |
| 4 | 3 | breq1d 4650 |
. . . 4
⊢ (a = A →
((C ↑m a) ≈ (C
↑m b) ↔
(C ↑m A) ≈ (C
↑m b))) |
| 5 | 2, 4 | imbi12d 311 |
. . 3
⊢ (a = A →
((a ≈ b → (C
↑m a) ≈
(C ↑m b)) ↔ (A
≈ b → (C ↑m A) ≈ (C
↑m b)))) |
| 6 | | breq2 4644 |
. . . 4
⊢ (b = B →
(A ≈ b ↔ A
≈ B)) |
| 7 | | oveq2 5532 |
. . . . 5
⊢ (b = B →
(C ↑m b) = (C
↑m B)) |
| 8 | 7 | breq2d 4652 |
. . . 4
⊢ (b = B →
((C ↑m A) ≈ (C
↑m b) ↔
(C ↑m A) ≈ (C
↑m B))) |
| 9 | 6, 8 | imbi12d 311 |
. . 3
⊢ (b = B →
((A ≈ b → (C
↑m A) ≈
(C ↑m b)) ↔ (A
≈ B → (C ↑m A) ≈ (C
↑m B)))) |
| 10 | | bren 6031 |
. . . 4
⊢ (a ≈ b
↔ ∃r r:a–1-1-onto→b) |
| 11 | | eqid 2353 |
. . . . . . . . . 10
⊢ (s ∈ (C ↑m a) ↦ (s ∘ ◡r)) =
(s ∈
(C ↑m a) ↦ (s ∘ ◡r)) |
| 12 | 11 | enmap2lem4 6067 |
. . . . . . . . 9
⊢ (r:a–1-1-onto→b →
Fun ◡(s ∈ (C ↑m a) ↦ (s ∘ ◡r))) |
| 13 | | dfrn4 4905 |
. . . . . . . . . 10
⊢ ran (s ∈ (C ↑m a) ↦ (s ∘ ◡r)) =
dom ◡(s ∈ (C ↑m a) ↦ (s ∘ ◡r)) |
| 14 | 11 | enmap2lem5 6068 |
. . . . . . . . . 10
⊢ (r:a–1-1-onto→b →
ran (s ∈
(C ↑m a) ↦ (s ∘ ◡r)) =
(C ↑m b)) |
| 15 | 13, 14 | syl5eqr 2399 |
. . . . . . . . 9
⊢ (r:a–1-1-onto→b →
dom ◡(s ∈ (C ↑m a) ↦ (s ∘ ◡r)) =
(C ↑m b)) |
| 16 | 12, 15 | jca 518 |
. . . . . . . 8
⊢ (r:a–1-1-onto→b →
(Fun ◡(s ∈ (C ↑m a) ↦ (s ∘ ◡r))
∧ dom ◡(s ∈ (C
↑m a) ↦ (s ∘ ◡r)) =
(C ↑m b))) |
| 17 | | df-fn 4791 |
. . . . . . . 8
⊢ (◡(s ∈ (C
↑m a) ↦ (s ∘ ◡r)) Fn
(C ↑m b) ↔ (Fun ◡(s ∈ (C
↑m a) ↦ (s ∘ ◡r))
∧ dom ◡(s ∈ (C
↑m a) ↦ (s ∘ ◡r)) =
(C ↑m b))) |
| 18 | 16, 17 | sylibr 203 |
. . . . . . 7
⊢ (r:a–1-1-onto→b →
◡(s
∈ (C
↑m a) ↦ (s ∘ ◡r)) Fn
(C ↑m b)) |
| 19 | 11 | enmap2lem2 6065 |
. . . . . . . 8
⊢ (s ∈ (C ↑m a) ↦ (s ∘ ◡r)) Fn
(C ↑m a) |
| 20 | | dff1o4 5295 |
. . . . . . . 8
⊢ ((s ∈ (C ↑m a) ↦ (s ∘ ◡r)):(C
↑m a)–1-1-onto→(C
↑m b) ↔
((s ∈
(C ↑m a) ↦ (s ∘ ◡r)) Fn
(C ↑m a) ∧ ◡(s ∈ (C
↑m a) ↦ (s ∘ ◡r)) Fn
(C ↑m b))) |
| 21 | 19, 20 | mpbiran 884 |
. . . . . . 7
⊢ ((s ∈ (C ↑m a) ↦ (s ∘ ◡r)):(C
↑m a)–1-1-onto→(C
↑m b) ↔ ◡(s ∈ (C
↑m a) ↦ (s ∘ ◡r)) Fn
(C ↑m b)) |
| 22 | 18, 21 | sylibr 203 |
. . . . . 6
⊢ (r:a–1-1-onto→b →
(s ∈
(C ↑m a) ↦ (s ∘ ◡r)):(C
↑m a)–1-1-onto→(C
↑m b)) |
| 23 | 11 | enmap2lem1 6064 |
. . . . . . 7
⊢ (s ∈ (C ↑m a) ↦ (s ∘ ◡r))
∈ V |
| 24 | 23 | f1oen 6034 |
. . . . . 6
⊢ ((s ∈ (C ↑m a) ↦ (s ∘ ◡r)):(C
↑m a)–1-1-onto→(C
↑m b) →
(C ↑m a) ≈ (C
↑m b)) |
| 25 | 22, 24 | syl 15 |
. . . . 5
⊢ (r:a–1-1-onto→b →
(C ↑m a) ≈ (C
↑m b)) |
| 26 | 25 | exlimiv 1634 |
. . . 4
⊢ (∃r r:a–1-1-onto→b →
(C ↑m a) ≈ (C
↑m b)) |
| 27 | 10, 26 | sylbi 187 |
. . 3
⊢ (a ≈ b
→ (C ↑m
a) ≈ (C ↑m b)) |
| 28 | 5, 9, 27 | vtocl2g 2919 |
. 2
⊢ ((A ∈ V ∧ B ∈ V) → (A
≈ B → (C ↑m A) ≈ (C
↑m B))) |
| 29 | 1, 28 | mpcom 32 |
1
⊢ (A ≈ B
→ (C ↑m
A) ≈ (C ↑m B)) |