New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > n0 | GIF version |
Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
n0 | ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲxA | |
2 | 1 | n0f 3559 | 1 ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 ∈ wcel 1710 ≠ wne 2517 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: neq0 3561 reximdva0 3562 n0moeu 3563 pssnel 3616 r19.2z 3640 r19.2zb 3641 r19.3rz 3642 r19.3rzv 3644 uniintsn 3964 iunn0 4027 pw10b 4167 ndisjrelk 4324 prepeano4 4452 nnpw1ex 4485 tfindi 4497 tfinsuc 4499 sfinltfin 4536 vfintle 4547 nulnnn 4557 opabn0 4717 dmxp 4924 xpnz 5046 dmsnn0 5065 ecdmn0 5968 mapsspm 6022 mapsspw 6023 map0 6026 ncssfin 6152 ncspw1eu 6160 nntccl 6171 ce0nnul 6178 ce0nnulb 6183 fce 6189 lecidg 6197 lec0cg 6199 lecncvg 6200 addlec 6209 nc0le1 6217 |
Copyright terms: Public domain | W3C validator |