![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > eliunxp | GIF version |
Description: Membership in a union of Cartesian products. Analogue of elxp 4801 for nonconstant B(x). (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
eliunxp | ⊢ (C ∈ ∪x ∈ A ({x} × B) ↔ ∃x∃y(C = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . . . 4 ⊢ (C ∈ ∪x ∈ A ({x} × B) → C ∈ V) | |
2 | 1 | pm4.71ri 614 | . . 3 ⊢ (C ∈ ∪x ∈ A ({x} × B) ↔ (C ∈ V ∧ C ∈ ∪x ∈ A ({x} × B))) |
3 | opeqexb 4620 | . . . 4 ⊢ (C ∈ V ↔ ∃x∃y C = 〈x, y〉) | |
4 | 3 | anbi1i 676 | . . 3 ⊢ ((C ∈ V ∧ C ∈ ∪x ∈ A ({x} × B)) ↔ (∃x∃y C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B))) |
5 | 2, 4 | bitri 240 | . 2 ⊢ (C ∈ ∪x ∈ A ({x} × B) ↔ (∃x∃y C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B))) |
6 | nfiu1 3997 | . . . 4 ⊢ Ⅎx∪x ∈ A ({x} × B) | |
7 | 6 | nfel2 2501 | . . 3 ⊢ Ⅎx C ∈ ∪x ∈ A ({x} × B) |
8 | 7 | 19.41 1879 | . 2 ⊢ (∃x(∃y C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B)) ↔ (∃x∃y C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B))) |
9 | 19.41v 1901 | . . . 4 ⊢ (∃y(C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B)) ↔ (∃y C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B))) | |
10 | eleq1 2413 | . . . . . . 7 ⊢ (C = 〈x, y〉 → (C ∈ ∪x ∈ A ({x} × B) ↔ 〈x, y〉 ∈ ∪x ∈ A ({x} × B))) | |
11 | opeliunxp 4820 | . . . . . . 7 ⊢ (〈x, y〉 ∈ ∪x ∈ A ({x} × B) ↔ (x ∈ A ∧ y ∈ B)) | |
12 | 10, 11 | syl6bb 252 | . . . . . 6 ⊢ (C = 〈x, y〉 → (C ∈ ∪x ∈ A ({x} × B) ↔ (x ∈ A ∧ y ∈ B))) |
13 | 12 | pm5.32i 618 | . . . . 5 ⊢ ((C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B)) ↔ (C = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) |
14 | 13 | exbii 1582 | . . . 4 ⊢ (∃y(C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B)) ↔ ∃y(C = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) |
15 | 9, 14 | bitr3i 242 | . . 3 ⊢ ((∃y C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B)) ↔ ∃y(C = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) |
16 | 15 | exbii 1582 | . 2 ⊢ (∃x(∃y C = 〈x, y〉 ∧ C ∈ ∪x ∈ A ({x} × B)) ↔ ∃x∃y(C = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) |
17 | 5, 8, 16 | 3bitr2i 264 | 1 ⊢ (C ∈ ∪x ∈ A ({x} × B) ↔ ∃x∃y(C = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2859 {csn 3737 ∪ciun 3969 〈cop 4561 × cxp 4770 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-xp 4784 |
This theorem is referenced by: raliunxp 4823 mpt2mptx 5708 |
Copyright terms: Public domain | W3C validator |