NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssiun2s GIF version

Theorem ssiun2s 4011
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
Hypothesis
Ref Expression
ssiun2s.1 (x = CB = D)
Assertion
Ref Expression
ssiun2s (C AD x A B)
Distinct variable groups:   x,A   x,C   x,D
Allowed substitution hint:   B(x)

Proof of Theorem ssiun2s
StepHypRef Expression
1 nfcv 2490 . 2 xC
2 nfcv 2490 . . 3 xD
3 nfiu1 3998 . . 3 xx A B
42, 3nfss 3267 . 2 x D x A B
5 ssiun2s.1 . . 3 (x = CB = D)
65sseq1d 3299 . 2 (x = C → (B x A BD x A B))
7 ssiun2 4010 . 2 (x AB x A B)
81, 4, 6, 7vtoclgaf 2920 1 (C AD x A B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710   wss 3258  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-iun 3972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator