![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ssiun2s | GIF version |
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ssiun2s.1 | ⊢ (x = C → B = D) |
Ref | Expression |
---|---|
ssiun2s | ⊢ (C ∈ A → D ⊆ ∪x ∈ A B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2489 | . 2 ⊢ ℲxC | |
2 | nfcv 2489 | . . 3 ⊢ ℲxD | |
3 | nfiu1 3997 | . . 3 ⊢ Ⅎx∪x ∈ A B | |
4 | 2, 3 | nfss 3266 | . 2 ⊢ Ⅎx D ⊆ ∪x ∈ A B |
5 | ssiun2s.1 | . . 3 ⊢ (x = C → B = D) | |
6 | 5 | sseq1d 3298 | . 2 ⊢ (x = C → (B ⊆ ∪x ∈ A B ↔ D ⊆ ∪x ∈ A B)) |
7 | ssiun2 4009 | . 2 ⊢ (x ∈ A → B ⊆ ∪x ∈ A B) | |
8 | 1, 4, 6, 7 | vtoclgaf 2919 | 1 ⊢ (C ∈ A → D ⊆ ∪x ∈ A B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 ⊆ wss 3257 ∪ciun 3969 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-iun 3971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |