| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > opeliunxp2 | GIF version | ||
| Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| opeliunxp2.1 | ⊢ (x = C → B = E) |
| Ref | Expression |
|---|---|
| opeliunxp2 | ⊢ (〈C, D〉 ∈ ∪x ∈ A ({x} × B) ↔ (C ∈ A ∧ D ∈ E)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2868 | . . . 4 ⊢ (〈C, D〉 ∈ ∪x ∈ A ({x} × B) → 〈C, D〉 ∈ V) | |
| 2 | opexb 4604 | . . . 4 ⊢ (〈C, D〉 ∈ V ↔ (C ∈ V ∧ D ∈ V)) | |
| 3 | 1, 2 | sylib 188 | . . 3 ⊢ (〈C, D〉 ∈ ∪x ∈ A ({x} × B) → (C ∈ V ∧ D ∈ V)) |
| 4 | 3 | simpld 445 | . 2 ⊢ (〈C, D〉 ∈ ∪x ∈ A ({x} × B) → C ∈ V) |
| 5 | elex 2868 | . . 3 ⊢ (C ∈ A → C ∈ V) | |
| 6 | 5 | adantr 451 | . 2 ⊢ ((C ∈ A ∧ D ∈ E) → C ∈ V) |
| 7 | nfcv 2490 | . . 3 ⊢ ℲxC | |
| 8 | nfiu1 3998 | . . . . 5 ⊢ Ⅎx∪x ∈ A ({x} × B) | |
| 9 | 8 | nfel2 2502 | . . . 4 ⊢ Ⅎx〈C, D〉 ∈ ∪x ∈ A ({x} × B) |
| 10 | nfv 1619 | . . . 4 ⊢ Ⅎx(C ∈ A ∧ D ∈ E) | |
| 11 | 9, 10 | nfbi 1834 | . . 3 ⊢ Ⅎx(〈C, D〉 ∈ ∪x ∈ A ({x} × B) ↔ (C ∈ A ∧ D ∈ E)) |
| 12 | opeq1 4579 | . . . . 5 ⊢ (x = C → 〈x, D〉 = 〈C, D〉) | |
| 13 | 12 | eleq1d 2419 | . . . 4 ⊢ (x = C → (〈x, D〉 ∈ ∪x ∈ A ({x} × B) ↔ 〈C, D〉 ∈ ∪x ∈ A ({x} × B))) |
| 14 | eleq1 2413 | . . . . 5 ⊢ (x = C → (x ∈ A ↔ C ∈ A)) | |
| 15 | opeliunxp2.1 | . . . . . 6 ⊢ (x = C → B = E) | |
| 16 | 15 | eleq2d 2420 | . . . . 5 ⊢ (x = C → (D ∈ B ↔ D ∈ E)) |
| 17 | 14, 16 | anbi12d 691 | . . . 4 ⊢ (x = C → ((x ∈ A ∧ D ∈ B) ↔ (C ∈ A ∧ D ∈ E))) |
| 18 | 13, 17 | bibi12d 312 | . . 3 ⊢ (x = C → ((〈x, D〉 ∈ ∪x ∈ A ({x} × B) ↔ (x ∈ A ∧ D ∈ B)) ↔ (〈C, D〉 ∈ ∪x ∈ A ({x} × B) ↔ (C ∈ A ∧ D ∈ E)))) |
| 19 | opeliunxp 4821 | . . 3 ⊢ (〈x, D〉 ∈ ∪x ∈ A ({x} × B) ↔ (x ∈ A ∧ D ∈ B)) | |
| 20 | 7, 11, 18, 19 | vtoclgf 2914 | . 2 ⊢ (C ∈ V → (〈C, D〉 ∈ ∪x ∈ A ({x} × B) ↔ (C ∈ A ∧ D ∈ E))) |
| 21 | 4, 6, 20 | pm5.21nii 342 | 1 ⊢ (〈C, D〉 ∈ ∪x ∈ A ({x} × B) ↔ (C ∈ A ∧ D ∈ E)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 ∪ciun 3970 〈cop 4562 × cxp 4771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-xp 4785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |