NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfeq2 GIF version

Theorem nfeq2 2500
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 xB
Assertion
Ref Expression
nfeq2 x A = B
Distinct variable group:   x,A
Allowed substitution hint:   B(x)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2489 . 2 xA
2 nfeq2.1 . 2 xB
31, 2nfeq 2496 1 x A = B
Colors of variables: wff setvar class
Syntax hints:  wnf 1544   = wceq 1642  wnfc 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2478
This theorem is referenced by:  issetf  2864  eqvincf  2967  csbhypf  3171  nfpr  3773  intab  3956  nfmpt  5671  nfmpt2  5675  cbvmpt  5676  cbvmpt2x  5678  fmpt2x  5730
  Copyright terms: Public domain W3C validator