New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfeq2 | GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfeq2 | ⊢ Ⅎx A = B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2489 | . 2 ⊢ ℲxA | |
2 | nfeq2.1 | . 2 ⊢ ℲxB | |
3 | 1, 2 | nfeq 2496 | 1 ⊢ Ⅎx A = B |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1544 = wceq 1642 Ⅎwnfc 2476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 |
This theorem is referenced by: issetf 2864 eqvincf 2967 csbhypf 3171 nfpr 3773 intab 3956 nfmpt 5671 nfmpt2 5675 cbvmpt 5676 cbvmpt2x 5678 fmpt2x 5730 |
Copyright terms: Public domain | W3C validator |