New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfnfc1 | GIF version |
Description: x is bound in ℲxA. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc1 | ⊢ ℲxℲxA |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2479 | . 2 ⊢ (ℲxA ↔ ∀yℲx y ∈ A) | |
2 | nfnf1 1790 | . . 3 ⊢ ℲxℲx y ∈ A | |
3 | 2 | nfal 1842 | . 2 ⊢ Ⅎx∀yℲx y ∈ A |
4 | 1, 3 | nfxfr 1570 | 1 ⊢ ℲxℲxA |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-nfc 2479 |
This theorem is referenced by: vtoclgft 2906 sbcralt 3119 sbcrext 3120 csbiebt 3173 nfopd 4606 nfimad 4955 nffvd 5336 |
Copyright terms: Public domain | W3C validator |