NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnfc1 GIF version

Theorem nfnfc1 2493
Description: x is bound in xA. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 xxA

Proof of Theorem nfnfc1
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2479 . 2 (xAyx y A)
2 nfnf1 1790 . . 3 xx y A
32nfal 1842 . 2 xyx y A
41, 3nfxfr 1570 1 xxA
Colors of variables: wff setvar class
Syntax hints:  wal 1540  wnf 1544   wcel 1710  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-nfc 2479
This theorem is referenced by:  vtoclgft  2906  sbcralt  3119  sbcrext  3120  csbiebt  3173  nfopd  4606  nfimad  4955  nffvd  5336
  Copyright terms: Public domain W3C validator