New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfopab1 | GIF version |
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab1 | ⊢ Ⅎx{〈x, y〉 ∣ φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4624 | . 2 ⊢ {〈x, y〉 ∣ φ} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} | |
2 | nfe1 1732 | . . 3 ⊢ Ⅎx∃x∃y(z = 〈x, y〉 ∧ φ) | |
3 | 2 | nfab 2494 | . 2 ⊢ Ⅎx{z ∣ ∃x∃y(z = 〈x, y〉 ∧ φ)} |
4 | 1, 3 | nfcxfr 2487 | 1 ⊢ Ⅎx{〈x, y〉 ∣ φ} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 {cab 2339 Ⅎwnfc 2477 〈cop 4562 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-opab 4624 |
This theorem is referenced by: opelopabsb 4698 ssopab2b 4714 dmopab 4916 rnopab 4968 funopab 5140 nfmpt1 5673 |
Copyright terms: Public domain | W3C validator |