New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfopab | GIF version |
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) (Unnecessary distinct variable restrictions were removed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
nfopab.1 | ⊢ Ⅎzφ |
Ref | Expression |
---|---|
nfopab | ⊢ Ⅎz{〈x, y〉 ∣ φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4623 | . 2 ⊢ {〈x, y〉 ∣ φ} = {w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} | |
2 | nfv 1619 | . . . . . 6 ⊢ Ⅎz w = 〈x, y〉 | |
3 | nfopab.1 | . . . . . 6 ⊢ Ⅎzφ | |
4 | 2, 3 | nfan 1824 | . . . . 5 ⊢ Ⅎz(w = 〈x, y〉 ∧ φ) |
5 | 4 | nfex 1843 | . . . 4 ⊢ Ⅎz∃y(w = 〈x, y〉 ∧ φ) |
6 | 5 | nfex 1843 | . . 3 ⊢ Ⅎz∃x∃y(w = 〈x, y〉 ∧ φ) |
7 | 6 | nfab 2493 | . 2 ⊢ Ⅎz{w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} |
8 | 1, 7 | nfcxfr 2486 | 1 ⊢ Ⅎz{〈x, y〉 ∣ φ} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 {cab 2339 Ⅎwnfc 2476 〈cop 4561 {copab 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-opab 4623 |
This theorem is referenced by: csbopabg 4637 nfxp 4810 nfco 4882 nfcnv 4891 nfmpt 5671 |
Copyright terms: Public domain | W3C validator |