| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ssopab2b | GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| ssopab2b | ⊢ ({〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} ↔ ∀x∀y(φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 4629 | . . . 4 ⊢ Ⅎx{〈x, y〉 ∣ φ} | |
| 2 | nfopab1 4629 | . . . 4 ⊢ Ⅎx{〈x, y〉 ∣ ψ} | |
| 3 | 1, 2 | nfss 3267 | . . 3 ⊢ Ⅎx{〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} |
| 4 | nfopab2 4630 | . . . . 5 ⊢ Ⅎy{〈x, y〉 ∣ φ} | |
| 5 | nfopab2 4630 | . . . . 5 ⊢ Ⅎy{〈x, y〉 ∣ ψ} | |
| 6 | 4, 5 | nfss 3267 | . . . 4 ⊢ Ⅎy{〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} |
| 7 | ssel 3268 | . . . . 5 ⊢ ({〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} → (〈x, y〉 ∈ {〈x, y〉 ∣ φ} → 〈x, y〉 ∈ {〈x, y〉 ∣ ψ})) | |
| 8 | opabid 4696 | . . . . 5 ⊢ (〈x, y〉 ∈ {〈x, y〉 ∣ φ} ↔ φ) | |
| 9 | opabid 4696 | . . . . 5 ⊢ (〈x, y〉 ∈ {〈x, y〉 ∣ ψ} ↔ ψ) | |
| 10 | 7, 8, 9 | 3imtr3g 260 | . . . 4 ⊢ ({〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} → (φ → ψ)) |
| 11 | 6, 10 | alrimi 1765 | . . 3 ⊢ ({〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} → ∀y(φ → ψ)) |
| 12 | 3, 11 | alrimi 1765 | . 2 ⊢ ({〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} → ∀x∀y(φ → ψ)) |
| 13 | ssopab2 4713 | . 2 ⊢ (∀x∀y(φ → ψ) → {〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ}) | |
| 14 | 12, 13 | impbii 180 | 1 ⊢ ({〈x, y〉 ∣ φ} ⊆ {〈x, y〉 ∣ ψ} ↔ ∀x∀y(φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∈ wcel 1710 ⊆ wss 3258 〈cop 4562 {copab 4623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |