New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfres | GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ ℲxA |
nfres.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎx(A ↾ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4789 | . 2 ⊢ (A ↾ B) = (A ∩ (B × V)) | |
2 | nfres.1 | . . 3 ⊢ ℲxA | |
3 | nfres.2 | . . . 4 ⊢ ℲxB | |
4 | nfcv 2490 | . . . 4 ⊢ ℲxV | |
5 | 3, 4 | nfxp 4811 | . . 3 ⊢ Ⅎx(B × V) |
6 | 2, 5 | nfin 3231 | . 2 ⊢ Ⅎx(A ∩ (B × V)) |
7 | 1, 6 | nfcxfr 2487 | 1 ⊢ Ⅎx(A ↾ B) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2477 Vcvv 2860 ∩ cin 3209 × cxp 4771 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-nin 3212 df-compl 3213 df-in 3214 df-opab 4624 df-xp 4785 df-res 4789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |