NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfsn GIF version

Theorem nfsn 3785
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1 xA
Assertion
Ref Expression
nfsn x{A}

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 3748 . 2 {A} = {A, A}
2 nfsn.1 . . 3 xA
32, 2nfpr 3774 . 2 x{A, A}
41, 3nfcxfr 2487 1 x{A}
Colors of variables: wff setvar class
Syntax hints:  wnfc 2477  {csn 3738  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743
This theorem is referenced by:  nfopk  4069  sniota  4370
  Copyright terms: Public domain W3C validator